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Statistical learning of distractor 
locations is dependent on task 
context
Jasper de Waard 1,2*, Dirk van Moorselaar 1,2, Louisa Bogaerts 1,2,3 & Jan Theeuwes 1,2,4

Through statistical learning, humans can learn to suppress visual areas that often contain distractors. 
Recent findings suggest that this form of learned suppression is insensitive to context, putting into 
question its real-life relevance. The current study presents a different picture: we show context-
dependent learning of distractor-based regularities. Unlike previous studies which typically used 
background cues to differentiate contexts, the current study manipulated task context. Specifically, 
the task alternated from block to block between a compound search and a detection task. In both 
tasks, participants searched for a unique shape, while ignoring a uniquely colored distractor item. 
Crucially, a different high-probability distractor location was assigned to each task context in the 
training blocks, and all distractor locations were made equiprobable in the testing blocks. In a control 
experiment, participants only performed a compound search task such that the contexts were made 
indistinguishable, but the high-probability locations changed in exactly the same way as in the main 
experiment. We analyzed response times for different distractor locations and show that participants 
can learn to suppress a location in a context-dependent way, but suppression from previous task 
contexts lingers unless a new high-probability location is introduced.

The traditional division of attentional selection into top-down (voluntary, goal-driven) and bottom-up (automatic, 
stimulus-driven)  effects1–4 is making way for a third category, called selection history5,6. Selection history, which 
refers to learned attentional effects that neither can be explained by top-down nor by bottom-up processes, is 
studied predominantly in paradigms such as contextual  cueing7,8, reward  learning9,10, and as of recently statistical 
learning of target  enhancement11,12 and distractor suppression 11,13,14. Though the full breadth of history-based 
effects is as of yet likely unknown, the presumed common denominator across all those effects is that past 
experiences of attentional selection are (often implicitly) learned, and put to use “when the relevant context is 
encountered”. The current work investigates the latter statement on context-dependency in relation to statistical 
learning of distractor suppression.

Statistical learning concerns the extraction of regularities in space and time from sensory  input15. As a topic of 
research, it has gained a lot of momentum after the seminal discovery that infants can learn the transitional prob-
abilities from one syllable to the next, facilitating word  segmentation16. Since then, the focus has been extended 
to  adults15, and the statistical learning paradigm was ported to the visual domain by replacing syllables with 
 shapes17,18. Similarly, spatial relations between shapes and distributional regularities regarding shapes’ frequen-
cies are readily picked up even during passive  viewing17,19,20. In contextual cueing, statistical learning is observed 
as facilitated target detection when searching through earlier encountered display configurations compared to 
searching through novel  displays7,8,21. Furthermore, in a probability cueing paradigm, target search is implicitly 
biased towards the location where the target appears most often; participants are faster when the target appears 
in the high-probability location compared to low-probability  locations22,23. Particularly relevant for the present 
study is the learning of regularities regarding distracting stimuli. Learning the likely location of a distractor 
can help to decrease distraction, thereby facilitating target detection. Adapting the classic additional singleton 
 paradigm24,25, Wang and  Theeuwes14 introduced a statistical regularity in the location of the uniquely colored 
distractor, such that it was far more likely to appear in one location (the high-probability location) than any of 
the seven other (low-probability) locations in the search display. As a result, participants learned to suppress the 
high-probability location, as reflected by faster search times when the distractor appeared on the high-probability 
location and slower search times when the target appeared  there11,14,26–29.
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Context plays a major role in many theories of learning and  memory30, and for good reason as the advan-
tages of context sensitivity are large. Without some form of context sensitive learning, selection history effects 
would require a constant re-learning of biases for contexts that have been encountered before, and perhaps 
more catastrophically, inadequate biases would persist even when they are no longer relevant. Indeed, many of 
the empirical findings align with the advantages of context dependency. In visual search, contextual cueing and 
reward learning have been shown to involve context-dependent  learning31–35. For example, stimulus features 
that have been rewarded in a particular context, later only captured attention when presented in the same con-
text (e.g., same background  scene31). In contextual cueing, hyper specificity was reported, with no transfer at all 
between contexts that only differed in  color35. Furthermore, if background images are associated with search 
displays that require either feature search (searching for a specific combination of features) or singleton search 
(searching for a deviation from the rest) in a training phase, those backgrounds reinstate the associated search 
strategy in a testing  phase36,37. Context-dependent distractor effects have also been observed in habituation-based 
 studies38,39. After repeated exposure, attentional capture for the distractor habituated (decreased), but returned 
in full a day later when the background was changed, while it remained habituated when the background was 
kept the  same39. However, habituation in these experiments was not location-specific.

Beyond visual search, context-dependent effects have also been found in sequence learning studies. For 
example, in an fMRI study on explicit sequence learning of object images, two contexts (cued by the color of 
the fixation dot) were associated with different sequences while using the same objects (i.e. ABC versus ACB)40. 
The results showed progressively faster responses to context-matching versus mismatching sequences, as well as 
context-specific expectation suppression in the BOLD response. Furthermore, contextual cues such as a change in 
voice or pitch help listeners to track multiple sets of embedded patterns in continuous speech  input41,42. Without 
such a cue to signify a change in context, previously learned patterns are rapidly replaced by new  ones43.

Context-dependent distractor suppression would make it possible to revive suppression of potentially dis-
tracting stimuli when a given context is encountered again, and to extinguish previous suppression settings 
when the context changes. In other words, previously learned suppression could be applied selectively to match 
a particular context. By contrast, context-independent distractor suppression would require constant learning 
and unlearning of suppression to adapt to the current situation, necessarily lagging behind because sufficient 
repetitions are required to update the suppression settings. Taken together, the theoretical benefits of context-
dependency as well as the observed context-dependent results in related paradigms provide a case for context-
dependent distractor suppression.

Counter to this idea however, using an adapted version of the distractor-based statistical learning paradigm 
of Wang and  Theeuwes14, Britton and  Anderson44 reported suppression effects that were not context specific but 
instead generalized across contexts. In their study (Experiment 1), the context on each trial was determined by a 
grayscale background image of a forest or a city (as in a prior study by Anderson on reward  learning31). Crucially, 
the high-probability distractor location depended on the context, so that the urban background predicted a dif-
ferent distractor location than the forest. Furthermore, the context was visible well before the onset of the search 
display, so that the most probable upcoming distractor location could in principle be anticipated. The results 
indicated that learning had taken place: search times were faster when the distractor was at a high-probability 
versus a low-probability location. However, between the two high-probability distractor locations, search times 
were the same irrespective of the context. Motivated by the discrepancy between theoretical predictions of con-
text-dependency and empirical evidence for the absence thereof, de Waard et al.45 conceptually replicated these 
results across three experiments. Experiment 1 signified context through the color of the background. To increase 
the distinction between the two contexts, Experiment 2 employed an auditory versus a visual cue, motivated by 
findings from the temporal preparation  literature46. In Experiment 3, each context was coupled with a different 
response mapping, so that processing the context was a necessity for performing the task. Throughout all these 
experiments, including Britton and Anderson’s44, Bayesian analyses indicated an absence of context-dependent 
suppression (only a group of participants that showed awareness of the regularities in Experiment 3 yielded some 
context-dependent effects). In other words, the suppression was not flexibly adjusted from context to context, 
but both high-probability distractor locations were equally suppressed regardless of the context.

Although these results appear to demonstrate context insensitivity during learning, one should consider that 
the different contexts were randomly intermixed. While context-dependent findings in reward or punishment 
 learning31,32,34 were also obtained with intermixed designs, statistical learning necessarily requires repetitions 
across multiple trials, and it is possible that intermixed designs simply do not provide the required repetitions per 
context to develop context associations, such that different contexts end up lumped together. Conversely, reward 
and punishment learning may simply require fewer trials for learning to take place. Furthermore, a stronger 
context manipulation could uncover context-dependent effects that would remain hidden using only background 
manipulations. Therefore, we developed a paradigm in which the context was determined by the task. Half of the 
trials employed a compound search task, where participants responded to the orientation of the line inside the 
target. The other half employed a detection task, where participants responded to the absence or presence of the 
target, which has been shown to yield a pattern of response times that is very similar to the compound search 
task in its sensitivity to distractor  regularities47. Crucially, a different high-probability distractor location was 
assigned to each task, and these two distractor locations were located opposite of each  other48.

The task context, denoted Context A and Context B, was blocked to allow enough time for context-location 
associations to be formed and later retrieved. A context-location association was formed in the first training 
block for context A and the second for context B. In the subsequent testing block, context A was reintroduced, 
but all distractor locations were made equiprobable, such that any space-based suppression can only be attributed 
to learning of the distractor location regularities during training. This three-block procedure was then repeated 
for another three blocks with opposite contexts, such that each context was tested in one block. The total block 
sequence is thus: training A, training B, testing A, training B, training A, testing B (see also Fig. 1A). If learning 
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is indeed independent of experimental context (as previous studies suggest), the testing blocks should show 
lingering suppression that is most pronounced for the last-learned location. That is, in the first testing block one 
should observe lingering suppression at the location that had a high distractor probability in training context B, 
and in the second testing block at the high probability distractor location associated with context A. By contrast, 
if learning is context-dependent, there should be little to no lingering suppression, but instead a revived sup-
pression from the associated context (Fig. 1B). To further characterize the context effect, we also ran a control 
experiment in which the spatial distractor balance shifted across blocks in the same way as the main experiment, 
but critically there were no longer different task contexts that could be linked to this distractor manipulation 
(i.e., the task stayed the same throughout the entire experiment).

Main experiment
Statistically induced distractor suppression has been shown to occur within comparable time spans and experi-
mental setups in compound search tasks, where participants respond to the line orientation inside the uniquely 
shaped  target14, as well as visual detection tasks, where participants respond to the presence or absence of a 
uniquely shaped  target47. In Experiment 1 we combined these variants of the additional singleton paradigm into 
a single experiment. We reasoned that they were different enough to induce a different task context, yet similar 
enough to be analyzed in a comparable way.

Methods. Participants. Following Britton and  Anderson44, an effect with d = 0.6 would require a sample 
size of 31 to get β = 0.90 when α = 0.05. However, since they did not find a significant result, we attempted to de-
tect a smaller effect size (d = 0.45), which required a sample size of 54 to get β = 0.90 when α = 0.05. The number 
of non-discarded participants equaled or exceeded this minimal sample size in both experiments. Fifty-four 
adults (26 male, 27 female, 1 non-binary, mean age = 31, age range: 22 to 50) participated in Experiment 1 
through  Prolific49. They all reported having normal or corrected-to-normal (color) vision, and at minimum an 
undergraduate degree. Participation took approximately 35 min and participants earned £4,70. The experiment 
was approved by the Ethical Committee of the faculty of Behavioral and Movement Sciences of the Vrije Uni-
versiteit Amsterdam. Before the experiment, all participants gave informed consent and all the methods were 
performed in accordance with the Declaration of Helsinki.

Apparatus and stimuli. Because the experiment took place online, some factors (e.g. lighting and seating condi-
tions) could not be controlled. For replication purposes, item sizes and colors are reported in pixels and RGB val-
ues (red/green/blue). The experiment was created in  OpenSesame50 using OSweb 1.4.11, and run using  JATOS51.

Figure 1.  Illustration of the context and probability changes across blocks (A), as well as a graphical prediction 
of the results in the case of context-dependent learning (B). Figure created in Adobe Photoshop 22.4.3, https:// 
www. adobe. com/ produ cts/ photo shop. html.

https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
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The experimental display is illustrated in Fig. 2. Six shapes (one circle and five diamonds, or vice versa) were 
presented on an imaginary circle with a radius of 180 px. The circles and diamonds were 126 and 157 px high, 
respectively, in red (255/0/0) or green (0/200/0). Depending on the task, the center of the display contained a 
blue (37/146/242, radius: 14 px) or yellow (253/203/41) circle with a white P (for presence) or T (for tilt, Ver-
dana Bold, height: 19 px) inside it, respectively. In the T-task (compound search), each shape contained a grey 
(128/128/128) 45° or − 45° line (57 × 8 px). The background was dark grey (94/94/94).

Procedure and design. Figure 2 gives a schematic overview of a trial. The duration of the fixation period was 
randomly selected between 1000 and 1250 ms. The search display was visible until response or until a 3000 ms 
limit was exceeded. Participants searched for a unique shape (i.e., a circle among diamonds or vice versa). In the 
detection task (cued by a blue P) they reported whether it was present (left arrow key) or absent (right arrow 
key). In the compound search task (cued by a yellow T) they indicated the tilt direction of the line segment 
embedded within that shape (left/right arrow key). The P or T was already visible during the fixation period in 
order to cue the task. If the response was incorrect or too slow, a brief error message (‘Oops!’) was shown for 
500 ms, followed by a written instruction of the task until a keypress.

The target was always the uniquely shaped item, while the distractor was the uniquely colored item. A uniquely 
colored distractor was present on 50% of the trials. Whereas the target location was selected at random across 
all blocks, in the training blocks one distractor location occurred more often (72%) than the other locations 
(5.6% per location). The two high-probability locations were determined randomly for each participant, with the 
high-probability location of one task always opposite to that of the other task. The high-probability location for 
each task remained constant throughout the experiment. Critically, in testing blocks this spatial imbalance was 
removed and the distractor appeared with equal probability across all locations. In the compound search task, 
each shape in the display contained a line that was left or right-tilted at random. Participants were instructed 
to report the orientation of the line inside the target (i.e., the unique shape). In the detection task, the target 
was absent in half of the distractor-present trials and in half of the distractor-absent trials and participants were 
instructed to indicate whether or not the display contained a unique shape.

Figure 1A provides an overview of the block order. The experiment was separated into training blocks (72 
trials) and testing blocks (144 trials). Participants performed a training block of task A, followed by a training 
block of task B and a testing block of task A. Next, they performed a training block of task B, followed by a 
training block of task A and testing block of task B. Before every block, participants were told if it was going to 
be a P-block (detection task) or a T-block (compound search task), so that a context shift could be anticipated 
prior to starting the first trial of a new block. Every training block started with a practice block of 20 trials, that 
was repeated until accuracy reached at least 70% (on average, participants performed each practice phase 1.06 
times). Practice trials were included also in the second half of the experiment so that the total number of trials in 
which the regularity could be learned (this includes practice trials) in the first and second half of the experiment 

Figure 2.  Schematic overview of a trial, with the top presenting the detection task and the bottom the 
compound search task. The search display was visible until a keyboard response was provided or the 3000 ms 
limit was exceeded. In the detection task participants reported whether a unique shape was present (left arrow 
key) or absent (right arrow key). In the compound search task participants indicated the tilt direction (left/right) 
of the line segment inside the unique shape. Incorrect or too slow responses were followed by the word ‘Oops!’ 
and a written instruction of the task. Figure created in Adobe Photoshop 22.4.3, https:// www. adobe. com/ produ 
cts/ photo shop. html.

https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
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was approximately equal. A break was included after every block, and halfway through every testing block. The 
specific order of tasks was counterbalanced across participants so that half started with the compound search 
task (yellow T) and half started with the detection task (blue P). Awareness of the spatial regularities was assessed 
after all trials were completed. First, participants were asked whether the distractor appeared more frequently 
in one location than in other locations. Next, they were asked to indicate which location they thought was the 
high-probability location by typing in a location-based number (0–5), separately for each specific task (so twice 
in total, with a different central cue to indicate the task context).

Analyses. For response time (RT) analyses, we removed incorrect trials (5.2%) and performed a cleaning pro-
cedure (1.7%): RTs that deviated more than 3 SD from the mean (computed separately for each participant and 
each task) were also removed. Overall, this data cleaning procedure resulted in a loss of 6.9% of the data. The 
data for one participant was discarded because the overall accuracy was below 75%. As there was no evidence 
in support of a speed-accuracy trade-off (neither here, nor in the control experiment), we only report RT results 
in the main text. Accuracy results are reported in the supplementary analyses. For simplicity, we only report 
distractor-based analyses in the main text, but target-based analyses are reported in the supplementary analyses. 
Since half of the trials in the main experiment are not suitable for a target-based  analysis47, we only performed 
those analyses on the control experiment. All t-tests are planned comparisons, unless stated  otherwise52. If an 
analysis averaged across two tasks, an average was first calculated separately for each task, and then combined 
into a single average per participant. If no average could be computed for one of the two tasks, the data of that 
participant (one participant in Blocks 1 and 4) was omitted from the analysis. ANOVAs, t-tests, and Bayes-
ian equivalents were performed using  Jamovi53. For Bayesian analyses we used the default Cauchy distribution 
(scale = 0.707) as the prior. We report  BF10 (expressing the strength of evidence in favor of the alternative hypoth-
esis), meaning that  BF10 < 1 is in favor of the null-hypothesis (with the strength of evidence increasing as the BF 
approaches zero). The verbal labels used to describe the strength of the evidence (in either direction) are based 
on an established  classification54,55. A Greenhouse–Geisser correction was applied to the ANOVA results when 
the sphericity assumption was violated.

Results. The main analyses are based on data that is collapsed across the two tasks to increase statistical 
power and focus on context-dependent location learning rather than the specifics of each task. Separate analyses 
for each task in the testing blocks can be found in the supplementary analyses (Fig. S2).

Training blocks. Figure 3A and B show response times from the training blocks. The practice trials are also 
included in this analysis, because lingering suppression effects are expected to be strongest immediately follow-
ing a switch (but including the practice trials does not change the pattern of results). The training blocks are split 
into Blocks 1 and 4, the first training blocks of each experiment half, and Blocks 2 and 5, the last training blocks 
before the testing blocks. The match condition refers to the high-probability location that is associated with the 
current task context, the mismatch condition refers to the high-probability location this is associated with the 
other task context, and the low-probability condition refers to the four remaining locations. It should be noted 
that the mismatch condition is based on only 4 trials (excluding practice trials) per participant, and therefore 
does not provide an accurate RT estimate.

In Blocks 1 and 4 (Fig. 3A), RTs differed significantly between distractor conditions (absent, match, low-
probability, mismatch), F(1.85, 96.4) = 32.3, p < 0.001, η2

p = 0.38. Participants learned to suppress the current 
high-probability location, as responses were faster at the match location than the low-probability locations, 
t(52) = 3.55, p < 0.001, BF10 = 32.6, d = 0.49. The mismatch location was numerically the least suppressed location, 
but it did not differ significantly from the low-probability locations, t(52) = 0.36, p = 0.719, BF10 = 0.16, d = 0.49 
(where the BF provides moderate evidence for the absence of a difference). It did differ from the match location, 
t(52) = 2.5, p = 0.016, BF10 = 2.49, d = 0.34 (although the BF is inconclusive).

In Blocks 2 and 5 (Fig. 3B), RTs also differed significantly between distractor conditions, F(1.87, 98.95) = 41.9, 
p < 0.001, η2

p = 0.44. Participants learned to suppress the current high-probability location, as responses were 
faster at the match location than the low-probability locations, t(53) = 4.14, p < 0.001, BF10 = 181, d = 0.56. Numeri-
cally, the mismatch location potentially shows some lingering suppression from the previous block, but it was 
not significantly different from the low-probability locations, t(53) = 0.42, p = 0.679, BF10 = 0.16, d = 0.06 (where 
the BF provides moderate evidence for the absence of a difference). It approaches significance in comparison to 
the match location, t(53) = 1.92, p = 0.06, BF10 = 0.82, d = 0.26 (where the BF is inconclusive).

Testing blocks. Figure  3C shows response times from the testing blocks. RTs differed significantly between 
distractor conditions, F(2.56, 135.52) = 70.9, p < 0.001, η2

p = 0.57. Comparison to the low-probability locations 
shows that participants suppressed both the match location, t(53) = 2.93, p = 0.005, BF10 = 6.62, d = 0.4, and the 
mismatch location, t(53) = 2.51, p = 0.015, BF10 = 2.57, d = 0.34 (although the BF was inconclusive). There was 
no difference between the match and mismatch locations, t(53) = 0.12, p = 0.907, BF10 = 0.15, d = 0.02. Separate 
analyses for each task are shown in Fig. S2 in the supplementary analyses.

Revival of suppression. A crucial finding in the response time analyses is that the suppression for the first-
learned location (i.e., location A in the first half of the experiment, and location B in the second half) disappears 
when the task context changes and a second high-probability location is introduced (in the second and fifth 
blocks), but reappears when the first-learned context is encountered again in the testing block. To focus on 
this revival of suppression, Fig. 4A shows the difference scores between the first-learned location and the low-
probability locations across blocks. We argue that this revival of suppression is driven by the retrieval of the first-
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Figure 3.  Response times as a function of distractor condition, separated by training and testing blocks, for 
both the main experiment (A–C) and the control experiment (D–F). Error bars indicate 95% within-subject 
confidence  intervals56. (A,D) Training blocks: the first and fourth blocks. (B,E) Training blocks: the second and 
fifth blocks. (C,F) Testing blocks: the third and sixth blocks. The dotted blue line indicates the crucial difference 
between the main experiment and the control experiment.

Figure 4.  Difference scores between the first-learned location (i.e., location A in the first half of the experiment, 
and location B in the second half) and the low-probability locations, as a function of block type, for the main 
experiment (A) and the control experiment (B). Error bars indicate 95% within-subject confidence  intervals56.
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learned location from memory, based on its associated context (see also Fig. 1B). This also means that learning 
took place in a context-dependent way.

Awareness of the regularities. One-third of the participants (33%, here called the ‘aware’ group) indicated that 
the distractor occurred more often at some locations than others. Participants were also asked to indicate the 
high-probability location for each of the two tasks. By taking the distance (ranging from 0 to 3) between the loca-
tion indicated by the participant and the actual high-probability location for each of the two tasks, and averaging 
across the two distances, an awareness score was computed for every participant. An awareness score below 
chance-level could indicate some level of awareness of the high-probability locations.

We first computed a ‘context-blind’ awareness score, only looking at whether participants could indicate the 
two high-probability locations, independent of context. In this computation, if a participant selected location A 
for context B and location B for context A, we regarded that as a perfect score (0). This context-blind awareness 
score (mean = 0.94, SD = 0.52) was not below chance-level (0.87), t(53) = 0.82, p = 0.818, BF10 = 0.08, d = 0.13 (the 
BF in fact provides strong evidence for chance-level performance). Furthermore, the score also did not differ 
significantly from chance for the ‘aware’ group, t(17) = 1.07, p = 0.851, BF10 = 0.130, d = 0.25, or the ‘unaware’ 
group, t(35) = 0.37, p = 0.643, BF10 = 0.14, d = 0.06. Lastly, the ‘aware’ and ‘unaware’ groups did not differ in terms 
of their awareness score, t(52) = 0.6, p = 0.525, BF10 = 0.34, d = 0.19.

We also computed a ‘context-dependent’ awareness score, looking at whether participants could indicate the 
correct high-probability location for each of the two contexts separately. In this computation, if a participant 
selected location A for context B and location B for context A, we regarded that as the worst possible score (3), 
because each selected location was 3 positions away from the context-dependent location. This context-depend-
ent awareness score across participants (mean = 1.6, SD = 0.77) was not below chance-level (1.5), t(53) = 0.98, 
p = 0.833, BF10 = 0.08, d = 0.08 (the BF in fact provides strong evidence for chance-level performance). Further-
more, the awareness score also did not differ significantly from chance for the ‘aware’ group, t(17) = 1.76, p = 0.952, 
BF10 = 0.101, d = 0.42, or the ‘unaware’ group, t(35) = 0.54, p = 0.541, BF10 = 0.17, d = 0.02. Lastly, the ‘aware’ and 
‘unaware’ groups did not differ in terms of their awareness score, t(52) = 1.2, p = 0.237, BF10 = 0.51, d = 0.35. We 
conclude that there was likely no or very little awareness of the learned regularities, although the used measure 
of awareness should be interpreted with  caution57–59.

Discussion. The results of the main experiment were not in line with our predictions for context-dependent 
learning, nor our predictions for context-independent learning. On the one hand, there appears to be some 
context-dependent learning, as the high-probability location that was learned in Blocks 1 and 4 was no longer 
suppressed in Blocks 2 and 5, while suppression for this location (match) resurfaced in the testing blocks. Since 
all distractor locations were equiprobable in the testing blocks, this resurfaced suppression appears to be the 
result of context-dependent learning: upon recognizing a previously learned task context, the associated high-
probability location was suppressed (see also Fig.  4A). However, we also observed lingering suppression for 
the mismatch location in the testing blocks, and this was not in line with our prediction of context-dependent 
learning.

Control experiment
To be able to better understand the revival of suppression in the testing blocks and the role of context therein, 
we ran a control experiment that followed the same experimental design, except that we removed all context 
switches. Participants performed the same task (the compound search task) throughout the experiment. Cru-
cially, the high-probability distractor location changed between blocks in exactly the same way as in the main 
experiment. That is, the order of high-probability locations across blocks was: A, B, none (testing block), B, 
A, none (testing block). To facilitate comparison between the main experiment and the control experiment, 
we labelled the conditions the same way as in the main experiment, as if the high-probability locations were 
matching or mismatching the context (see Fig. 1A). We reasoned that if we again observed revival in this con-
trol experiment, we could rule out context-dependent learning. If we found a different pattern of results, that 
difference could be attributed to the switches in context and would indicate context-dependent learning in the 
main experiment. In the main experiment, a separate analysis of the compound search task yielded significant 
suppression for the match location (Fig. S2A), such that the difference between the main experiment and the 
control experiment cannot be ascribed to the characteristics of the detection task.

Methods. Fifty-five adults (30 male, 23 female, 2 non-binary, mean age = 32, age range: 21 to 50) partici-
pated. The procedure was identical to that of the main experiment, with the exception that the task remained 
the same throughout the experiment (i.e., a compound search task). As in the main experiment, practice blocks 
were repeated until accuracy reached at least 70% (on average, participants performed each practice phase 1.08 
times).

Analyses. The analyses were identical to the main experiment with the exception that we did not separate the 
analyses per context. While there were no actual context changes in the control experiment, we use the same 
condition labels as in the main experiment. Thus, ‘match’ refers to the location that would have been matching 
the context if there was one. Furthermore, the control experiment also allowed for analyzing response times in 
relation to the target location, because the compound search task lends itself to that analysis. Those results are 
reported in the supplementary analyses. Removal of incorrect trials (4.4%) and RT filtering (1.4%) resulted in 
an overall loss of 5.8% of the data.
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Results. Training blocks. Figure 3D and E show response times from the training blocks. The results from 
the training blocks for the control experiment follow the pattern of results of the main experiment. In Blocks 
1 and 4, RTs differed significantly between distractor conditions, F(1.75, 94.55) = 39.9, p < 0.001, η2

p = 0.43. Par-
ticipants learned to suppress the current high-probability location, as responses were faster at the match loca-
tion than the low-probability locations, t(54) = 5.61, p < 0.001, BF10 = 21,873, d = 0.76. The mismatch location was 
numerically the least suppressed location, but it did not differ significantly from the low-probability locations, 
t(54) = 0.22, p = 0.826, BF10 = 0.15, d = 0.03 (where the BF provides moderate evidence for the absence of a differ-
ence). It did differ from the match location, t(54) = 3.05, p = 0.004, BF10 = 8.94, d = 0.41.

In Blocks 2 and 5, RTs also differed significantly between distractor conditions, F(1.68, 90.66) = 47.8, p < 0.001, 
η2

p = 0.47. Participants learned to suppress the current high-probability location, as responses were faster at the 
match location than the low-probability locations, t(54) = 5.54, p < 0.001, BF10 = 17,205, d = 0.75. Numerically, 
the mismatch location potentially shows some lingering suppression from the previous block, but it was not 
significantly different from the low-probability locations, t(54) = 1.15, p = 0.256, BF10 = 0.27, d = 0.15 (where the 
BF provides moderate evidence for the absence of a difference). The comparison between match and mismatch 
was also nonsignificant, t(54) = 1.59, p = 0.118, BF10 = 0.48, d = 0.21.

Testing blocks. Figure 3F shows response times from the testing blocks. RTs differed significantly between dis-
tractor conditions, F(3, 162) = 99.5, p < 0.001, η2

p = 0.65. In contrast with the main experiment, participants did 
not suppress the match location compared to the low-probability locations, t(54) = 0.11, p = 0.916, BF10 = 0.15, 
d = 0.01 (where the BF provides moderate evidence for the absence of a difference). In line with the main experi-
ment, they did suppress the mismatch location, t(54) = 3.27, p = 0.002, BF10 = 15.61, d = 0.44. The difference 
between the match and mismatch locations was significant, t(54) = 2.48, p = 0.016, BF10 = 2.36, d = 0.33 (although 
the BF was inconclusive).

Awareness of the regularities. As in the main experiment, approximately one-third of the participants (36%, 
here called the ‘aware’ group) indicated that the distractor occurred more often at some locations than others. 
Since context in the control experiment was not differentiated, we only computed a ‘context-blind’ awareness 
score. In contrast to the main experiment, this context-blind awareness score (mean = 0.74, SD = 0.5) was below 
chance-level (0.87), t(54) = 1.99, p = 0.026, BF10 = 1.77, d = 0.27 (though the BF was inconclusive). However, the 
score was not significantly below chance for the ‘aware’ group, t(19) = 1.60, p = 0.063, BF10 = 1.28, d = 0.36, or the 
‘unaware’ group, t(34) = 1.23, p = 0.114, BF10 = 0.64, d = 0.21. The ‘aware’ and ‘unaware’ groups did not differ in 
terms of their awareness score, t(53) = 0.69, p = 0.192, BF10 = 0.34, d = 0.19.

Discussion. The response time results of the control experiment were in line with the main experiment, 
except for one crucial difference: there was no revival of suppression at the matching location in the testing 
block (see also Fig. 4B). We interpret this finding as follows. Given the alternating task context across blocks 
(see Fig. 1A), the match location in the testing blocks was learned first (in the first and fourth blocks), while 
the mismatch location in the testing blocks was learned second (in the second and fifth blocks), right before the 
testing blocks. The suppression for the match location was overridden by the new high-probability location in 
the second and fifth blocks, and the suppression of this location continued in the testing blocks. Crucially, the 
suppression at the match location was not revived in the testing blocks, because there was no context to actu-
ally enforce such a revival. Note that when the main experiment and the control experiment are compared on 
the basis of the compound search task alone, the same interpretation holds, because separate analysis of the 
compound search task yielded significant suppression at the context-matching location (Fig. S2A), similar to the 
collapsed analysis (Fig. 3C).

In contrast to the main experiment, the control experiment provided some evidence of awareness of the 
high-probability distractor locations. It should be noted however that the awareness score is based on only two 
responses, and therefore may not provide a reliable estimate. Previous  studies57–59 have argued that common 
post-experiment awareness questionnaires are insufficient to conclude unawareness, but this argument also works 
in the other direction. The measure is simply so unreliable that it is questionable whether it is meaningful at all. 
Perhaps unsurprisingly then, the Bayesian analyses were inconclusive, and the awareness score was no longer 
significant when we only included participants that actually indicated an imbalance in the distractor distribution 
(the ‘aware’ group) when asked about this. We conclude that the difference between the main experiment and the 
control experiment is unlikely to be due to a difference in awareness of the distractor regularities.

General discussion
Statistical regularities regarding the location of distractors in visual displays have been shown to facilitate search. 
This is because humans can learn to suppress locations that are more likely to contain a  distractor11,13,14,47. Some-
what surprisingly, a series of recent findings suggested that this form of learned suppression is insensitive to 
 context44,45. The current study however presents a different picture: we show that participants can actually learn 
to suppress a location in a context-dependent way, at least so long as each context is presented for an extended 
period of time (i.e., blocks of trials), and the contexts are dissimilar enough. We were able to uncover these 
findings by using a blocked design with separate training and testing blocks (Fig. 1A), in contrast to previous 
studies which used a mixed  design44,45. Furthermore, as a means of differentiating contexts more strongly than 
previous studies, the task alternated from block to block between a compound search task and a detection task. 
Crucially, a different high-probability distractor location was assigned to each context in the training blocks, and 
all distractor locations were made equiprobable in the testing blocks. In the control experiment, the contexts were 
made indistinguishable for participants, but the high-probability locations changed in exactly the same way as in 
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the main experiment. Upon encountering a familiar task context in a testing block, participants showed a revival 
of suppression for the location that was associated with that context in an earlier training block. Crucially, this 
revival of suppression for a familiar context was absent in the control experiment, simply because there were no 
contexts to associate the distractor locations with.

Our findings are the first evidence for context-dependent spatial suppression resulting from statistical learn-
ing, providing a novel and important insight into the mechanisms behind the implicit learning of distractor 
locations. The finding that distractor location probabilities can be learned in a context-dependent way is crucial 
for the relevance of history-based attentional effects. Without some form of contextual binding, learned sup-
pression effects would require a constant re-learning of the statistical regularities of contexts that have already 
been encountered. On a more theoretical level, context-dependency can be taken as evidence for an intelligent 
learning mechanism that maintains multiple regularities over time, as opposed to a simple habit-like mecha-
nism where only the last-learned regularity is available. Furthermore, our findings reconcile the previously 
observed generalized  suppression44,45 with the presumed context-dependency of selection history  effects5 and 
the observed context-dependency in the reward  learning31, contextual  cueing35, and broader statistical learning 
 literature41,42. However, our findings do not imply that the learning of multiple distractor regularities is always 
context-dependent. It remains to be seen whether weaker context manipulations such as background images 
can also instantiate context-dependent effects when applied in a blocked design. Context switches may simply 
need to be sufficiently spaced in time for context-dependent learning to occur, because otherwise two contexts 
would need to be updated more or less in parallel. It is also possible that in mixed  designs44,45 context-dependent 
learning did occur but was obscured in the data by lingering suppression effects.

Besides context-dependent learning we also observed lingering suppression from the directly preceding 
context. As described, testing blocks yielded a revival of earlier suppression matching the context of the test-
ing block, but there was also suppression that mismatched with the testing block’s context (although the BF 
was inconclusive in the main experiment). In other words, both the high-probability distractor locations were 
suppressed in the testing blocks. This was a puzzling finding, because if learning was context-dependent, we 
expected that suppression would only be active for the location matching the current context. If a location-context 
association has been learned, it seems a waste of energy to suppress more than what this association dictates. We 
interpret the mismatching suppression in the testing blocks as lingering suppression from the directly preced-
ing training block. This raises another question: Why would the suppression from the previous training block 
linger in the testing blocks, but not (or much weaker) in the training blocks? The simplest answer appears to be 
that a different high-probability location is introduced in the training blocks, whereas the testing blocks contain 
no high-probability locations whatsoever. Thus, we explain the data as follows: Participants can implicitly learn 
to associate high-probability distractor locations with their respective contexts, but suppression for a previous 
high-probability location continues to linger unless a new high-probability location is  introduced13. It seems 
unlikely that suppression will linger indefinitely, so we assume that it gradually decreases, but the 144 trials in 
our testing blocks were not enough to show this.

Lingering suppression could result from a slow neural mechanism that requires time to adapt to a new situa-
tion. The neural underpinnings of implicitly learned suppression are still poorly  understood27,60–63 so that many 
options remain open. In addition to or instead of neural factors, lingering suppression likely reflects the inherent 
slowness of statistical learning, where repetitions are crucial to filter out the noise in an environment that is rid-
dled with randomness. However, neither of these explanations appear entirely satisfactory in this case, because 
they cannot explain the stark difference between the strong presence of lingering suppression in the testing 
blocks, and the absence or near absence of lingering suppression in the training blocks. The low trial counts in 
crucial conditions unfortunately make it impossible to investigate the time course of learning within blocks, but 
the averaged results per block suggest that the 72 trials + 20 practice trials of the training blocks were enough to 
remove most or all lingering suppression, whereas the 144 trials of the testing blocks did very little (if anything) 
to decrease it. Thus, it appears that the priority map can be quickly updated when a new high-probability location 
is  introduced64, but updates slowly when all spatial imbalances are  removed44,65,66. Part of the answer might lie 
in the trial counts at the mismatch location specifically (where lingering suppression shows up), because those 
are only 2 trials per training block and 12 per testing block. The low trial count at the mismatch location in the 
training blocks could have made it difficult to let go of previous suppression, or it could simply mean that the 
response time for that specific condition was unreliable. In general, findings on the time course of learning and 
unlearning often do not converge, suggesting that many factors play a  role11,44,66–69.

In sum, the present findings show that statistical learning of spatial suppression is context dependent, at least 
so long as the contexts are dissimilar enough and presented in blocks. However, we also observed lingering sup-
pression for locations mismatching with the context. A control experiment with no contextual differentiation 
whatsoever confirmed that learning in the main experiment must have been context-dependent. The long-lasting 
lingering suppression is a finding that requires further explanation, and we have made several suggestions for 
avenues of further investigation. Our findings substantially increase the real-life relevance of implicitly learned 
attentional suppression. Naturally, the present results are limited in that they only consider distractor suppression 
as opposed to target enhancement, and implicit as opposed to explicit learning. Furthermore, we have operation-
alized context by using two similar but distinct tasks, and it remains to be seen whether context-manipulations 
that are not task-relevant can also be learned in a context-dependent  way70,71, and whether context-manipulations 
that are even stronger might result in less lingering suppression. In this sense, the current study raises a series of 
interesting questions about the learning and lingering of context-dependent regularities in visual search as well 
as in other domains of cognition, which could be explored in future research.
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Data availability
Experimental materials and data are available here: https:// osf. io/ xm59c/. None of the experiments were 
preregistered.
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