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Highlights
Effects of VSL on visual attention have
proven more ubiquitous than previously
assumed; people do not only learn statis-
tical regularities concerning task-relevant
targets, they also adapt to regularities
concerning task-irrelevant distractors.

Eye-tracking research has demonstrated
that observers make fewer eye move-
ments to locations that are suppressed
regardless of whether a distractor or a
While the visual environment contains massive amounts of information, we
should not and cannot pay attention to all events. Instead, we need to direct
attention to those events that have proven to be important in the past and sup-
press those that were distracting and irrelevant. Experiences molded through a
learning process enable us to extract and adapt to the statistical regularities in
the world. While previous studies have shown that visual statistical learning
(VSL) is critical for representing higher order units of perception, here we review
the role of VSL in attentional selection. Evidence suggests that through VSL,
attentional priority settings are optimally adjusted to regularities in the environ-
ment, without intention and without conscious awareness.
target is presented at that location.

Explicit awareness of the regularities
present in the search displays has re-
peatedly been shown to have no effect
on learning, confirming the notion that
statistical learning is largely unconscious.

A wide range of regularities have been
found to modulate attentional prioritiza-
tion. These include distributional regulari-
ties regarding themost probable location
of a target or distractor, regular trial-to-
trial transitions (where the location of a
target or distractor on trial n-1 predicts
its subsequent location on trial n), and
regularities that associate a particular
moment in timewith a particular location.

Studies have shown that statistical
distractor learning requires little to no
executive control resources. Regardless
of whether (spatial) working memory
was fully loaded, learning to suppress
was equally effective.
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Statistical learning
Extracting regularities from the environment in service of automatic behavior is one of the most
fundamental human abilities and is often referred to as statistical learning. Abundant research
supports the idea that observers easily learn the underlying structure of auditory and/or visual
sensory input. One of the most well-known findings is that infants exposed to continuous non-
sense streams of speech for only two minutes, react differently to hearing novel ‘words’ that
repeatedly occurred in the stream as opposed to ‘nonwords’ which recombined the same
syllables. This indicates that infants can use information about syllable co-occurrences to
discover word boundaries [1]. Following the classic work on speech segmentation, several
studies used sequentially presented shapes in which temporal patterns were embedded, for
example, by randomly intermixing sets of triplets (i.e., three shapes presented in sequence; see
example in Figure 1A; left panel) into a long sequence [2,4,5]. Analogous to auditory statistical
learning, at a surprise test following learning, participants typically showcase larger familiarity
with triplets they were exposed to relative to foil triplets, indicating sensitivity to the visual patterns.
Because evidence for statistical learningwas foundwhen stimuli were observed passively without
any explicit task, it has been argued that the mere exposure to these streams is enough to
passively absorb these regularities ([2,7,8], but see [4]). Statistical learning is assumed to be an
implicit process that assimilated the statistical regularities in the input, operating without intent
and outside explicit awareness [4].

This impressive learning ability has been the subject of investigation in many cognitive domains (see [9]
for a discussion). Crucially, the acquisition of ourmost fundamental abilities, such as language [10] (see
[11] for a review), motor learning [12], object recognition [2,13], scene and object perception [14,15],
and conditioning [16] relies on such implicit adaptations to regularities [17] (see [18] for a review).

Recently, it has become clear that visual statistical learning (VSL) (see Glossary) plays an
important role not only for learning sequentially presented individual shapes in which there is no
competition for selection (as in triplet learning; Figure 1A) but also when regularities are embedded
within visual search displays containing multiple elements (Figure 1B). While these two forms of
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statistical learning arguably tap into mechanisms that track regularities across time and concur in the
implicit nature of learning, there are also clear differences. Whereas triplet learning induces
expectations regarding a temporal sequence of particular stimuli such that the next object on screen
can be predicted based on the current visual input [4,19], spatial regularities embedded in visual
search displaysmay shape attentional priority in space such that task relevant locations are boosted
and task irrelevant locations ignored [20] (Box 1).

Visual attentional selection
In many everyday activities, it is critical to dissociate between information that is relevant and
information that is distracting. For example, picture yourself driving. While trying to focus on the
Familiarization Familiarity judgement test: forced choice
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time

E
xp

er
im

en
ta

l p
ar

ad
ig

m

R
es

ul
ts

 d
em

on
st

ra
tin

g 
le

ar
ni

ng

Target detection test

Familiarity judgement

...

E
xp

er
im

en
ta

l p
ar

ad
ig

m

R
es

ul
ts

 d
em

on
st

ra
tin

g 
le

ar
ni

ng

Triplet

Foil

Target for this search trial

Low-probability 
distractor locations

High-probability 
distractor location

Task: search for unique shape
Circle target Diamond target

T T

D D

Green singleton
distractor

Red singleton
distractor

Distractor at any of low-probability locations

Distractor at high-probability location

Visual search

Task: press for target shape

Task: watch the stream, optional cover task

Triplet Foil

P
er

ce
nt

ag
e 

ch
os

en
 (

%
)

0

20

40

60

80

Choice

Target detection

R
es

po
ns

e 
tim

e 
(m

s)

400

410

420

430

440

Target position within triplet
1st 2nd 3th

750

780

810

840

870

900

Distractor condition

Low 
probability

High 
probability

R
es

po
ns

e 
tim

e 
(m

s)

No 
distractor

Visual search

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. Examples of paradigms often used in research on visual statistical learning (VSL). (A) Visual triplet learning; participants are exposed to a continuous
stream of shapes with embedded triplets. In a familiarity judgment test afterwards, participants show greater familiarity for triplets than for foils. In a target detection test,
participants are faster to respond to a target shape when it is the second or third shape in a triplet. In this task, participants implicitly learn the statistical temporal
relationships among visual stimuli. (B) Distractor location learning; participants perform the additional singleton task searching for a unique shape (diamond between
circles or a circle between diamonds) while ignoring a color singleton distractor. The color distractor, if present, appeared more likely in one location than in the other
locations. The typical finding is that relative to baseline (i.e., no distractor present; gray bar) distractors captured attention (slower response times: dark blue bar), but
critically this attentional capture was significantly attenuated when the distractor was presented at the high-probability location (light blue bar). In this task, participants
implicitly learn that the distractor is presented more likely in one location and suppress this location in order to attenuate distraction.
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Box 1. VSL: a unitary learning system or a collection of paradigms?

Whether statistical learning in different sensory modalities and cognitive domains within a same modality is supported by a
single set of underlying mechanisms is a topic of debate [113–115]. While we discuss different ‘visual statistical
learning’ (VSL) tasks that all show sensitivity to statistical regularities in a visual environment, we do not imply that VSL is
necessarily a unified concept. The nature of regularities in different VSL tasks differs substantially: for example, regularities
can be in time versus space and transitional (i.e., after A follows B) versus distributional (i.e., A is more frequent) [116]. In
addition, the behavioral outcomes of learning also differ vastly (e.g., recognition of a group of objects that form a pattern
versus attentional suppression of a certain location).

A theoretical model can be proposed in which the extraction of these different types of regularities relies on shared com-
putations in the hippocampus [117]. Such a unitary learning system would be parsimonious, yet there is currently no con-
vincing empirical evidence in support of this view. Alternatively, sensitivity to specific regularities could be an
emergent property of different learning mechanisms (see [9] for a discussion). For example, learning to suppress the
location where a distractor is likely to occur could rely on different computations compared with learning to predict the
upcoming object in a sequence. In this case, VSL would be a label for a range of phenomena that appear to be similar
in the sense that they all concern the extraction of structure in visual input but are not mechanistically similar. As such,
an individual’s learning ability could differ substantially across VSL tasks, to a larger extent than what could be explained
by basic differences in, for example, encoding the stimuli [9].

One way to tackle this question would be to investigate individual differences: systematic positive correlations between
performance across a range of VSL tasks such as embedded triplet learning and learned distractor suppression would
be consistent with the view of VSL as a unitary learning system [9,116]. Relatedly, one could look at special
populations or neurological patients with hypothesized deficits in statistical learning. A unitary learning system would
predict difficulties in acquiring sensitivity to statistical structure that are general in the sense that they emerge across all
visual tasks that tap the learning of statistical structure [9,118].

Trends in Cognitive Sciences

Glossary
Additional singleton paradigm: a
visual search task in which observers
search for a unique shape (usually a
diamond between circles or a circle
between diamonds) while an element
with a unique color is also present. The
uniquely colored element is called a color
singleton distractor and its presence
interferes with search for the target.
Attentional capture: the automatic
and involuntary direction of attention
towards an object irrespective of
whether the object is relevant for the task
at hand.
Attentional selection: a collection of
processes that allow the prioritization of
particular input for further processing
while simultaneously suppressing
irrelevant or distracting information.
Feature search mode: a search
strategy in which the observer selectively
searches for a specific target-defining
property such as a specific color or
specific shape (see also ‘Singleton
detection mode’).
Goal-driven (top-down) selection:
selection is volitional, completely driven
by the momentary, current (task) goals
of the observer.
History-driven selection: selection is
driven by previous selection experiences;
not necessarily related to the observer’s
current goals (i.e., top-down attention) or
the display characteristics (bottom-up
salience).
Proactive suppression: the priority
signal at a specific location is suppressed
before the actual stimulus is presented
(proactive control) (see also ‘Reactive
suppression’).
Reactive suppression: the priority
signal at a specific location is
suppressed following the initial allocation
of attention to that location (reactive
control) (see also ‘Proactive
suppression’).
Singleton detection mode: a search
strategy in which the observer searches
for any unique salient item that is unique
within a display (any stimulus that ‘pops
out’ from the display) (see also ‘Feature
search mode’).
Spatial priority map: a representation
of a topographic space encoding the
priority of individual locations combining
signals from sensory input (bottom-up),
current goal states (top-down or
behavioral relevance), and statistical
learning (history driven).
Stimulus-driven (bottom-up)
selection: when selection is automatic,
task at hand, your senses are constantly bombarded with new information: the blare of a car
horn, a traffic light turning red, pedestrians crossing the street, blinking advertisements alongside
the road, a buzz from your phone. Attention makes it possible to selectively prioritize relevant
information (e.g., the crossing pedestrians) while suppressing task-irrelevant information
(e.g., blinking advertisements). Through experience, attentional selection is facilitated as you
learn to direct attention to those events that have proven to be important in the past and suppress
those that were distracting.

Despite its prominent role within a broad range of fundamental cognitive abilities, for many years
the role of statistical learning within attentional selection has been ignored. While there is a long
history of studying how previous selection episodes influence selection on the current trial, in
particular in the context of low-level priming [21,22], these effects are typically not considered
‘statistical learning’ because of their short-term nature [23]. It is becoming increasingly clear, however,
that selection priority is often influenced by previous selection experiences (i.e., selection history) in a
manner that is disconnected from both the observer’s current goals [i.e., goal-driven (top-down)
selection] and stimulus-driven (bottom-up) selection (i.e., bottom-up salience) [24].

A classic study by Biederman [25] demonstrated that statistical learning is not limited to temporal
and spatial relationships among auditory and visual stimuli [1–4,6,61], but also affects attentional
selection. This seminal study showed that objects violating visual regularities learned over a life-
time are more difficult to find, for example, when these objects are presented at inconsistent lo-
cations within scenes (e.g., a water cooker on the floor, see also [14]). Building on this work,
research known under the term ‘contextual cueing’ has shown that search is facilitated when
the target appears at the same location in a visual layout that was encountered previously relative
to visual layouts that were never seen before [26,27] (for a review see [28]). The classic finding is
that targets are located faster in display configurations that are fixed throughout the experiment
relative to configurations that are only seen once, indicating that observers learned the associa-
tion between the spatial configuration and the target location. In addition, so-called ‘probability
cuing’ studies have shown that participants can learn which location (or area within the display)
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completely driven by the properties of
the (physically salient) stimuli present in
the display.
Visual statistical learning (VSL): the
automatic, implicit learning of the
statistical regularities (temporal and/or
spatial) that characterize the visual
environment.
is more likely to contain the target, which results in an attentional bias as evidenced by par-
ticipants being faster to detect a target positioned in high-probability locations than in low-
probability locations [29–31].

These studies are consistent with classic Posner cueing studies [32] showing that people are
faster to detect targets appearing in probable locations than improbable locations [33]. Notably
however, unlike Posner cueing studies in which people are asked to explicitly direct attention in
a top-down, goal-driven way to a location in space, in contextual and probability cueing studies
the effect occurs without instruction and without the intention to learn. Typically, observers show
little awareness for what they had learned [34] (Box 2). Contextual and probability cueing studies
hence reveal that the visual system is sensitive to regularities in the environment and that it will
encode and retrieve information that is relevant for the task.

History-based distractor suppression
The research discussed earlier highlights how statistical learning helps to extract task-relevant
properties by learning the underlying structure of visual input, either when that information is pre-
sented in isolation or when it is embedded in a search display. More recent research, however,
demonstrates that history-driven selection biases resulting from this learning do not only
prioritize target properties, such as the location and features of the target [26], as human ob-
servers are also sensitive to properties of objects that are task irrelevant [20,35–41] (for recent re-
views see [42,43]).

In a series of experiments,Wang and Theeuwes [39–41] examined whether observers could learn
regularities regarding the location of the distractor and, if so, how it influences attentional priority.
For this purpose, they made a small modification to the additional singleton paradigm [44,45],
in which participants search for a unique shape (either a diamond between circles or a circle
between diamonds), such that the salient, yet irrelevant, color singleton, when present, appeared
with a higher probability at one specific location (Figure 1B; left panel). The typical finding is that
even though the salient color singleton distractor is completely irrelevant to the task, it captures
attention, evidenced by slower responses to the target when a singleton is present relative to
when it is absent [44,45]. As visualized in Figure 1B (right panel), relative to baseline (i.e., no
distractor present; gray bar) distractors indeed capture attention, but critically this attentional
Box 2. Aware or unaware?

Numerous studies have shown that the extraction of regularities from the environment and the adaptations to these reg-
ularities can proceed without the intention to learn and without conscious awareness [17,47,119,120]. With ‘without con-
scious awareness’we imply that participants are not able to explicitly indicate the regularities present in the display. In most
experiments investigating statistical learning of the location of the distractor, at most, only a few participants are aware of
the regularities present in the display [39–41,60,121,122]. In experiments in which regularities regarding the target are ma-
nipulated, awareness is much higher, with about two-thirds of the participants able to report the high-probability target lo-
cation [31]. Note, however, that this all depends on the probabilities used, the number of trials, and the way awareness is
assessed. Yet, everything being equal, it may not be surprising that the awareness regarding the likely target location is
much higher than that of the distractor location as the target is task relevant.

While in triplet learning explicit knowledge regarding the sequences of visual stimuli improves performance [123] and larger
search biases have been found sometimes for individuals that are aware of a target regularity in visual search [124], no
such effect was reported with learning to suppress a location. In a study that explicitly tested this, it was shown that the
amount of suppression was exactly the same, irrespective of whether the experimental manipulation highlighted or
masked the underlying statistical regularity [48]. Related to this is the finding that the explicit instruction to suppress a lo-
cation in a top-down way does not work; if anything this resulted in an attentional prioritization of the location that needed
to be suppressed [39]. It should be noted, however, that the current approach to determine awareness of particular pro-
cesses has been criticized on methodological grounds as inferences about being aware or not are made on the basis of
null effects in relatively small samples [125]. In addition, recent work using alternative awareness measures suggests that
the awareness of distractor regularities might have been underestimated in previous work [126].
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capture is significantly attenuated at the high-probability location (light blue bar) relative to low-
probability distractor locations (dark blue bar).

These results are interpreted as evidence that through statistical learning, locations that are likely
to contain a distractor become suppressed such that they compete less for attention than other
locations (for similar conclusions see [20,46]). Consequently, the priority signal of any object, be it
relevant or irrelevant to the task at hand, presented at that location is attenuated. If the distractor
is presented at that location, attentional capture is reduced. But also, when the target happens to
be presented at that high-probability distractor location, its selection is less efficient, as reflected
by longer response times. This hampered processing of targets at high-probability distractor
locations suggests that learned spatial suppression is basically feature-blind (Box 3).

The implicit nature of statistical learning in visual search
Several follow-up studies have further characterized the learned distractor suppression effect.
In line with the classical studies showcasing that statistical regularities are extracted passively,
without any intention to learn and without explicit awareness of the learned associations [47],
suppression at the high-probability distractor location is observed independent of participants’
explicit awareness of the regularity, although procedures to dissociate between ‘aware’ and
‘unaware’ participants using post hoc questionnaires has been criticized (Box 2). While future
work is necessary to establish to what extent the effect is truly independent of conscious aware-
ness, it is noteworthy that the observed suppression effect appears identical in groups of partici-
pants in which the experimental manipulation either highlighted or masked the underlying
statistical regularity [48]. Moreover, distractor regularities are learned even when the regularities
are unrelated to the current task and goals [49,50], again suggesting that this form of suppression
relies on implicit learning that requires little to no executive control. Indeed, high-probability
distractor locations are suppressed to the same extent, irrespective of whether working memory
is loaded with a visual-spatial memory task [51,52]. Also, distractor suppression is observed inde-
pendent of whether participants search for a unique feature (e.g., a shape singleton) favoring
singleton detection mode, or search for a specific target feature (feature search mode)
[41,53]. Together these findings indicate that oftentimes learning regularities about distracting infor-
mation occurs implicitly, with little awareness, and is independent from the current search goals
and the availability of executive resources.

How does learning occur?
While statistical learning has long been described as a learning mechanism that operates auto-
matically across ages and modalities [1,2], growing evidence suggests that allocating attention
to the individual events in a stream can boost statistical learning and is sometimes even necessary
[4,54,55]. For learning to occur in visual search, we also assume that spatial attention towards a
Box 3. Space- versus feature-based suppression

There is ample evidence that through statistical learning, locations that are likely to contain a distractor are suppressed
proactively [31,67,127,128], indicating that the locationwithin the prioritymap is suppressed before the display is presented.
While this suppression is assumed to be implemented at a spatial priority map and thus generic, there is also evidence that
under specific conditions spatial suppression can become tuned to specific distractor features and/or dimensions
[37,60,129]. It is less clear, however, whether through statistical learning, particular features can be suppressed proactively,
independent of their location. Some have argued that it is indeed possible to suppress distractor features without first
directing attention to them [69,108,130–135]. Yet, there has been some controversy about this, as others have argued that
this suppression is, at least partly, reactive [66,136,137], suggesting that attention needs to be directed to the feature before
it can be suppressed (known as rapid disengagement [137]). Also, it has been argued that in specific conditions
when observers are able to selectively attend the relevant (target) feature, it may appear that the irrelevant distractor feature
is suppressed [43,138]. Yet, enhancing the target feature does not necessarily imply proactive feature suppression. For a
detailed discussion on this issue see [139].
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target or a distractor is a prerequisite for learning to occur [53,56,57]. For example, in ‘probability
cuing’ studies [29–31,58] in which a target appears more often in one region than in other
regions, each time attention is directed to the target, associations are formed between the
target and its location within the visual field. In a recent study investigating across trials learn-
ing it was shown that if there is no initial direction of attention to the target (for example, when
search is serial rather than parallel), learning across trial regularities does not occur, but that
learning can be instantiated when targets are made salient such that they pop out from the
display [59]. We assume that spatial statistical learning operates by continuously adjusting
weights within an assumed spatial priority map, which at any moment in time dynamically
controls the deployment of covert attention and gaze [20]. When a location contained relevant
information in the past, that location is upregulated, whereas a location is downregulated
when it has a higher probability of containing distracting information. In this view, selection
simply follows the priority landscape that arises after combining a variety of signals, such as
current goals and bottom-up saliency, within which priority weights are induced by previous
selection episodes. The premise that statistical learning of distractor (and target) location
reflects weight changes in spatial priority maps also means that learning is not restricted to
a single location, as weights at multiple locations can be adjusted in parallel. Indeed, learned
suppression is concurrently observed at multiple high-probability distractor locations [57,60] and
learning of target and distractor probabilities can co-occur, even when the two are manipulated
independently [31].

The time course of learning
Consistent with demonstrations that statistical learning in triplet learning tasks is extremely rapid
[19,61], current evidence suggests that the updating of local priority accrues extremely fast, only
needing few trials to become manifest [62]. These time course analyses are complicated, how-
ever, because statistical learning and short-term intertrial priming effects are naturally conflated,
making it impossible to exclusively attribute the observed suppression/enhancement to learning.
Critically, even though in VSL studies there are contributions of different types of intertrial effects
(e.g., location, feature, or response repetitions) [21,22], effects attributed to statistical learning
remain in place when all these priming effects are taken into account [30,63]. Interestingly, intertrial
repetitions are not required for learning to occur [35], nor does their absence modulate the learning
speed. Indeed, learning is equally fast regardless of the ratio between high- and low-probability
distractor locations [64].

Proactive suppression
In the absence of any regularities, suppression of distractors often occurs reactively, implying that
after the distractor captured attention, active suppression mechanisms rapidly intervene [65,66].
For example, it was shown that suppression at a particular location was selectively adjusted on a
trial-by-trial basis to the saliency level of the distractor presented at that location [57] (Box 3). In
the case of suppression stemming from local weight changes in priority maps of space, however,
it is assumed that suppression is brought into force proactively. To test this, Huang and
colleagues [31] combined the additional singleton paradigm with a probe detection task, which
made it possible to take a peek at selection priorities just before the actual search display was pre-
sented. Probe reaction times indicated that already before the display was presented, the location
that was likely to contain a target was enhanced, while the location that wasmost likely to contain a
distractor was suppressed. These findings confirm that contingencies regarding targets and
distractors can be learned simultaneously, possibly via a proactive adjustment of the weights within
the priority map. It remains controversial, however, whether such proactive suppression is
evident in active neural tuning [67] or alternatively relies on activity silent mechanisms that require
sensory input to come into play [43,68].
6 Trends in Cognitive Sciences, Month 2022, Vol. xx, No. xx
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Eye-movement studies confirm the idea that there is proactive suppression [69]. There is a strong
link between attentional spatial selection and saccadic eye movements [70]: the eyes typically
land at the location to which attention is directed [71]. This implies that if one changes the addi-
tional singleton paradigm in such a way that eye movements are required to find the target
(i.e., making the line inside the target shape very small so that foveation is needed to determine
its orientation), one would expect that participants are less likely to make eye movements toward
the high-probability location when this location is suppressed. This is exactly what was found:
there are fewer saccades, and with longer latencies, directed towards the high-probability
distractor location, irrespective of whether that location contained a target or a distractor on
the current trial [72]. In addition to proactive suppression, however, there was also evidence for
some reactive suppression: on trials where the eyes were captured by the distractor, subse-
quent disengagement was faster at the high- compared with the low-probability distractor loca-
tion [73] (see also [69,74]).

Resetting the learned priority landscape
The current evidence shows that once learned suppression is established it remains stable, even
though from that moment on distractors capture little to no attention [41]. Thus, while capture to a
location is likely needed for initial learning to occur [53,56,57], when contingencies are learned
and suppression is in place, the mere presentation of a distractor at the suppressed location is
sufficient to maintain the local weight changes. Also, when search for the target continues but
the distractor is temporarily removed from the display, learned spatial suppression reappears
when the distractor is presented again [62]. To reset the current learned priority landscape, either
a new high-probability location needs to be introduced [75], or within the same display the spatial
imbalance needs to be removed altogether (i.e., all locations of target and distractors are
randomly assigned). Although it is unclear how quickly unlearning in these conditions occurs,
with some studies reporting longer persistence [38] than others [49,76], there is a clear asymmetry
in the rate of learning during acquisition and extinction, the latter being much slower. This makes
sense from an ecological perspective: while one wants to quickly adapt to clear changes in the
environment, learned suppression should not immediately return to baseline if the spatial imbalance
is temporarily absent as, in that specific context, suppression was useful in the past and likely will
be again in the near future.

More complex regularities
Our discussion of regularities so far has focused on a stationary high-probability location and
therefore is easily described through local weight changes in a priority map. In this sense, this
research differs from typical triplet learning studies, where the regularities are sequential in nature:
a particular event A is followed by event B and C [2,4,55,61]. Regularities in daily life are often
much more dynamic and dependent on what happened before, the timing of an event, and the
context in which it occurs.

Learning trial-to-trial transitions
Recent work shows that attentional selection is also sensitive to regularities across trials, which are
more similar to the regularities in other statistical learning tasks. For example, participants can learn
simple patterns across pairs of trials such that prioritization at a given location on the current trial
was instantiated by encountering a predictive target at another location on the preceding trial
(e.g., a target at the 3 o’clock position is always followed by a target at the 9 o’clock position and
vice versa) [77]. Even though these regularities were randomly mixed within random trial sequences,
the visual system was nevertheless sensitive to these regularities and adjusted the priority land-
scape on a trial-by-trial basis. As indicated, a follow-up study showed that in order to learn these
across-trial regularities, the target must be salient and needs to pop out from the display [59].
Trends in Cognitive Sciences, Month 2022, Vol. xx, No. xx 7
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A recent study, where attentional capture was reduced relative to a random baseline condition
when the distractor was presented according to a consistent pattern across trials (i.e., moving
clockwise or anticlockwise across the display), suggests that this type of intertrial learning is
not unique to targets, but also holds for learned distractor suppression [78]. Yet, it still needs to
be established whether such across-trial distractor sequence learning also holds for sequence
pairs. Nevertheless, these experiments show that while learned attentional biases can be quite
persistent, the priority landscape is highly flexible and can be up- and down-weighted for specific
locations across trials if need be. This suggests that changing weights to adjust attentional priority
at a given location is not a slow and effortful process, but instead can be extremely flexible. This
suggests that either changes can be implemented so fast that weights can be increased and
decreased on a trial-by-trial basis, or multiple priority maps can be entertained so that the correct
one can be turned ‘on’ for the upcoming trial. Importantly, recent evidence does suggest that
trial-to-trial distractor regularities need to concern specific properties of the distractor (such as
its location) to modulate attention: search is not affected by the trial-to-trial predictability of the
presence of a distractor when its characteristics are not predictable [79].

Learning where and when
Humans do not only learn to expect particular locations across trials [59,77], they also learn to
orient attention to particular locations at specific moments in time [80,81]. In a pioneering modi-
fication of the Posner’s orienting task by Coull and Nobre [82], instead of cueing the likely target
location, cues predicted the time interval after which a target would likely occur. Better
performance for valid trials (i.e., predicted time interval) than for invalid trials was observed,
indicating that humans can orient attention to particular moments in time in a goal-driven way.

Recently it was shown that orienting in time cannot only be done by cueing in a top-down way,
but also by learning to expect the moment in time of the occurrence of an event [83]. This
study examined whether learned suppression at high-probability locations would benefit from
expectations in time. Critically, there were two high-probability locations (maximally distant from
one another), of which one location only had a high distractor probability in displays that appeared
early in time (after 500ms), whereas the other location wasmore likely to contain a distractor later in
time (after 1500 ms). The results showed higher search efficiency for targets when the distractor
appeared at a high-probability location after the predicted time interval than when it appeared at
that same location after the nonpredicted interval. These findings suggest that suppression can
wax and wane, depending on learned expectations in time.

Similar results were reported in a study measuring eye movements to explore spatial orienting
in time [84]. Participants performed a search task in which the presentation of targets was
spatiotemporally predictable, such that the target appeared in a specific quadrant at a specific
time point in time within a trial. Performance was significantly better for spatiotemporally
predictable than unpredictable targets. Overall, these findings suggest that observers can
learn to anticipate the moment in time when targets or distractors arrive within a scene. This
learning will result in the momentary enhancement (in case of targets) or momentary suppres-
sion (in case of distractors) of the location where presentation of the target or distractor occurs.
It reveals a remarkable flexible tuning of the attentional biases to the learned regularities present
in time and space.

Learning in context
The experiments discussed so far each contained only one regularity set, be it static or dynamic.
For statistical learning to be of value in daily life, however, it is important to consider what happens
when regularity A is learned in context A, regularity B is learned in context B, and so on. Is only the
8 Trends in Cognitive Sciences, Month 2022, Vol. xx, No. xx
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last-learned regularity available, or can learners intelligently differentiate between the context of
each regularity? Without some form of contextual binding, selection history effects would require
a constant relearning of biases for contexts that have already been encountered. Indeed, in
classical auditory statistical learning, contextual cues such as a change in voice or pitch have
been shown to help listeners track multiple sets of embedded patterns in continuous speech
[85,86]. Also, contextual cuing and reward learning have been shown to involve highly context-
specific learning [87,88]. Counter to these observations, when learning tracks spatial probabilities
of targets across search displays, learning generalizes to new contexts, especially when the tasks
involve similar search behaviors [89,90]. However, learning becomes context specific when
processing of the context is necessary to perform the task [89], or when the two tasks differ in
attentional demands [91]. Although less well characterized, the current evidence also suggests
that spatial suppression effects are not context dependent [76], not even when the contexts
are made task-relevant [92]. However, context-dependent learning effects in those studies may
have been obscured because the contexts were randomly intermixed. Statistical learning by
definition requires integration across multiple trials, so that any regularity possibly needs to be
sustained for some period in order to be learned. When learning is blocked, each regularity is
linked to its context, making it possible to retrieve it when that context is encountered later on
(J. de Waard et al., unpublished). Future research needs to establish to what extent the experi-
mental context, as well as the task relevance of the associated regularity needs to be fixed for
learning to occur in order to further our insight into themechanisms underlying statistically learned
(de)prioritization.

Neural mechanisms
To date, very little is known about the underlying neural substrates driving learned distractor
suppression and target enhancement. Although not yet experimentally confirmed, based on
other studies examining different forms of statistical learning, the medial temporal lobe (MTL),
and in particular the hippocampus, arguably plays a prominent role in tuning attentional priority
in response to regularities in the environment [93–97]. fMRI studies using triplet or pair learning
have shown larger hemodynamic responses in the hippocampus to predictive first stimuli of
repeatedly presented pairs [97]. It seems feasible that during visual search, activity pattern of
MTL also represents the learned regularities of the environment; yet, instead of plastic stimulus
representations [98], we claim plasticity of the settings of the priority map representing space
(Figure 2). The MTL and, specifically, the hippocampus, which has also been linked to contextual
cueing [99], is known to represent space, particularly allocentric spatial location as demonstrated
by the discovery of ‘place cells’ in both rodents [100,101] and humans [102].

We propose that the statistical regularities present in the spatial environment change the repre-
sentation of this space within the hippocampus and, possibly, other subcortical structures
such as the basal ganglia [103]. Thesemight then change the attentional priority settings through-
out networks of cortical and subcortical nodes exhibiting properties of priority maps of space
(e.g., frontal eye field, lateral intraparietal area, inferotemporal cortex, the superior colliculus)
and in turn indirectly (via the aforementioned nodes) in lower-order areas with strong retinotopic
organization. Although our focus is on priority maps of space, consistent with this perspective it
has been shown that learned expectations can attenuate distractor processing across the visual
hierarchy based on overall distractor probability [104] and learned feature expectations [105]
(Box 3). Similarly, early visual cortex blood-oxygen-level-dependent signals are reduced for
distractors (as well as targets) occurring in high- versus low-probability regions [106]. This
suggests that specific suppression due to learning is implemented all the way down the visual
stream. Similarly, consistent with generic proactive suppression, studies using electroencephalog-
raphy showed that both targets and distractors elicit a PD, a neural marker of suppression
Trends in Cognitive Sciences, Month 2022, Vol. xx, No. xx 9
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Figure 2. Simplified overview of factors and brain regions involved in attentional selection. The landscape of the
priority map (orange), which ultimately determines attentional selection, integrates three sources of selection bias: (i) the
observers current selection goals (green); (ii) the physical salience of the items competing for attention (purple); and (iii)
statistical learning based on the trial history (blue). We propose that statistical regularities present in prior searches change
the representation of space within the hippocampus and possibly other subcortical structures, such as the basal ganglia,
such that priority at a given location is either upregulated (in case of target learning) or downregulated (in case of distractor
learning). Within spatial priority maps this information is then integrated with bottom-up saliency information encoded in
early visual areas and structures like the superior colliculus [140] and top-down attention as controlled by the frontal-
parietal network [141]. The current evidence suggests that there is not a single common map in the brain and hence we
do not link the spatial priority map to a specific brain structure. Instead, a number of cortical areas arguably work together
to generate resulting behavior. Specifically, the lateral intraparietal area of posterior parietal cortex, inferotemporal cortex,
frontal eye fields, and intermediate layers of the superior colliculus have each been described as priority maps [142,143].
Figure is adapted from [144].
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Outstanding questions
Is there statistical learning within
objects? It is likely that people implicitly
learn to expect a particular part of an
object (the handle of a hammer) to be
at a specific location within the object,
regardless of the actual spatiotopic or
retinotopic location.

Are there individual differences in
learning to suppress a location? Even
though there is ample evidence that
there are large individual differences in
VSL, it is unclear whether the standard
measures of attentional capture and
learned suppression are reliable and
stable at the level of the individual.

Is the mechanism underlying attentional
suppression and attentional
enhancement the same? The question
is whether attentional suppression of a
location is different from a process in
which all other locations are attentionally
enhanced.

How do changes in MTL due to statis-
tical learning change the weights within
the priority maps of space? Does the
activity pattern in MTL represent the
learned regularities of the environment,
and how does this feed into the spatial
priority map?

What is the relationship between the
modulation of attention by statistical
regularities and predictive coding?
Through VSL people learn to implicitly
expect targets to be presented at a par-
ticular location and direct their attention
accordingly. According to predictive
coding, the opposite is expected, as
people should direct attention to loca-
tions where large prediction errors are
generated (i.e., unexpected locations).
[107,108], at high-probability distractor locations [53,67]. Critically, the same stimuli presented at
low-probability distractor locations elicited an N2pc, a neural marker of selection [109].

Although highly speculative, we reason that the observed tuning of attentional priority in response to
more dynamic regularities such as trial-to-trial transitions (rather than a stationary high-probability
location) might also be driven by hippocampal learning. While place cells in the hippocampus
were traditionally believed to encode the observer’s current location in space, the successor repre-
sentation has been recently proposed wherein hippocampal place cell firing represents the current
state in terms of its future (successor) states [110]. Moreover, recent evidence highlights that
relational knowledge between objects or experiences is encoded into cognitive spaces, map-like
structures relying on firing patterns that also encodemaps in physical space [111,112]. An intriguing
possibility thus is that learning about regularities, be it a temporal sequence of objects as in classic
triplet/pair learning or regularities across visual searches (Figure 1), turn hippocampal representa-
tions into a predictive map-like structure. In the case of regularities in visual search, rather than
representing the anticipated object [97], these successor representations could entertain different
priority maps, such that the correct priority landscape can be activated based on the current succes-
sor representation.

Concluding remarks
The topic of statistical learning has been heavily investigated in the last two decades, yet with a
large focus on the learning of embedded temporal patterns, following in the footsteps of the
10 Trends in Cognitive Sciences, Month 2022, Vol. xx, No. xx
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seminal work by Saffran and colleagues [1]. Only much more recently have researchers started to
study the role of statistical learning in attentional selection. This review discusses recent behavioral,
eye-tracking, and neuroimaging work, which demonstrated that attentional priority settings are
adjusted in a dynamic way based on the environmental regularities that the observer encounters.
We highlighted the similarities between traditional statistical pattern learning and the statistical
learning in visual search, such as the observation that learning is largely implicit and unintentional,
as well as the range of regularities (across both time and space) that can be assimilated. Nonethe-
less, it has also outlined distinct challenges for potential learning mechanisms and the extent to
which the extraction of and adaptation to regularities in different cognitive domains are tackled by
overlapping neural systems remains largely an open question (see Outstanding questions).
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