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In everyday life, we must process complex visual input, 
and it has become increasingly clear that we can do 
this efficiently because our cognitive machinery is sen-
sitive to regularities in the environment. Most visual 
input is highly repetitive and structured, which makes 
it possible to predict what information will appear next 
on the basis of the current sensory input (Friston, 2009; 
Kok et al., 2017). Extracting regularities from the envi-
ronment is one of the most fundamental abilities of any 
living organism and is often referred to as visual statisti-
cal learning (VSL; Chun & Jiang, 1998; Fiser & Aslin, 
2001, 2002). Numerous studies have shown that the 
extraction of regularities via VSL can proceed without 
the intention to learn, and observers often appear to 
be unaware of the learning (Turk-Browne et al., 2005), 
although the extent to which learning is truly uncon-
scious is debated (Vicente-Conesa et al., 2022).

Recently, a surge of studies demonstrated the impor-
tance of VSL in shaping attentional selection (for recent 
reviews, see Theeuwes et al., 2022; van Moorselaar & 
Slagter, 2020). Classic work by Biederman and col-
leagues already demonstrated that in specific environ-
ments, we expect that particular objects will often 

co-occur and that certain objects are placed at specific 
locations (Biederman, 1972; Biederman et  al., 1982). 
For example, a coffeemaker, a pan, and a knife are 
likely to be found in a kitchen scene, and within that 
kitchen at a particular location (on the countertop, 
probably not on the floor). Although this and subse-
quent work using real-world scenes (Võ & Wolfe, 2012, 
2013) has provided much insight into how attentional 
selection is shaped by previous experiences, using real-
world scenes also has the drawback that one cannot 
control how much learning occurs outside the labora-
tory setting (e.g., one person may have much experi-
ence with scenes, whereas another may have little 
experience with such scenes). Thus, to establish not 
only what is learned but also how and when the asso-
ciation is learned, it is important to study VSL with 
rigorous control over the experimental stimuli.
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Abstract
Research has recently shown that efficient selection relies on the implicit extraction of environmental regularities, 
known as statistical learning. Although this has been demonstrated for scenes, similar learning arguably also occurs 
for objects. To test this, we developed a paradigm that allowed us to track attentional priority at specific object 
locations irrespective of the object’s orientation in three experiments with young adults (all Ns = 80). Experiments 1a 
and 1b established within-object statistical learning by demonstrating increased attentional priority at relevant object 
parts (e.g., hammerhead). Experiment 2 extended this finding by demonstrating that learned priority generalized to 
viewpoints in which learning never took place. Together, these findings demonstrate that as a function of statistical 
learning, the visual system not only is able to tune attention relative to specific locations in space but also can develop 
preferential biases for specific parts of an object independently of the viewpoint of that object.
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Recent lab studies have confirmed the ubiquitous 
role of statistical learning in the shaping of attentional 
priority. For example, in so-called contextual cuing 
tasks, participants need to detect the T-shaped target 
among a series of L-shaped distractors. Unbeknownst 
to the participants, half of the displays appear repeat-
edly with the target and distractors in the same configu-
ration, whereas other displays appear only once during 
the experiment. Participants learn this spatial regularity 
as they become faster at identifying the target in the 
repeated search displays in comparison with the novel 
displays (Chun & Jiang, 1998). Similarly, when the target 
is more likely to appear within particular locations or 
quadrants within a search display, participants become 
faster at finding targets presented at these high- 
probability locations than targets presented at low-
probability locations (Ferrante et  al., 2018; Geng & 
Behrmann, 2005; Huang et al., 2022). It is argued that 
through statistical learning, observers are able to extract 
the distributional properties of objects within scenes, 
which in turn optimizes visual selection (Frost et al., 
2015; Theeuwes et al., 2022).

Although it is firmly established that we are able to 
learn the distributional properties in time and space of 
objects within scenes, not much—if anything—is known 
about learning regularities regarding the locations of 
key parts within objects. For example, most people are 
able to turn on a laptop even if they have never seen 
that laptop before. Because of our previous encounters 
with laptops, we have learned which parts of the laptop 
are most likely to contain the power button. This raises 
the intriguing possibility that learned attentional biases 
are not restricted to a spatiotopic reference frame but 
that attention can also be tuned to object regularities 
in a way that is independent from the viewpoint of that 
object.

The present study was designed to test the feasibility 
of within-object statistical learning. Specifically, we 
examined whether participants could learn that specific 
parts within an object were more likely to contain rel-
evant information than other parts of the same object. 
Figure 1 shows the basic procedure. On each trial, 
participants had to search for a rotated T, which was 
located at one of two possible locations within an 
object (i.e., hammers or shoes). Critically, although 
these objects could appear in any of four possible ori-
entations, in biased blocks, one part of the object (e.g., 
head of the hammer) contained the target with higher 
probability (67.5%; independent of orientation). By 
contrast in neutral blocks, the target appeared with 
equal probability at both side of the object across all 
orientations.

This design allowed us to test whether attentional 
priority became biased toward the high-probability 
object location over time (Experiment 1). If so, then we 
expected that the relevant parts of the object would be 
prioritized in selection over less relevant parts. Critically, 
in the present paradigm, this prioritization is necessarily 
tied to a specific location within the object and thus 
independent from the actual retinotopic location on the 
screen. Indeed, for learning to be adaptive, once it is 
learned that, for example, the head of a hammer is more 
likely to contain relevant information, this location 
within the object should be prioritized independently of 
the current viewpoint of that hammer. Hence, in Experi-
ment 2, we tested whether the learned attentional bias 
within a given object would generalize to other view-
points of that object in which learning never took place 
(Experiment 2).

Open Practices Statement

Deidentified data for all experiments along with the 
data-analysis scripts (custom Python 3 scripts) and code 
for running the experiments have been made publicly 
available at OSF and can be accessed at https://osf.io/
cuwxe/. None of the experiments were preregistered.

Statement of Relevance

The amount of information that constantly enters 
our senses far surpasses our visual system’s pro-
cessing capacity. Fortunately, this perceptual 
problem can be simplified by taking advantage of 
the fact that the world is highly repetitive and 
therefore predictable. For example, there is abun-
dant evidence that we can learn distributional 
properties in time and space of objects within 
scenes. However, to date, it has remained unclear 
whether human observers can also learn to pri-
oritize specific key parts within objects on the 
basis of prior experience. Here, we demonstrated 
not only that people have the remarkable ability 
to learn to prioritize relevant locations within 
objects but also that this learning is viewpoint 
independent. This shows that in addition to learn-
ing within a retinotopic reference frame, statistical 
learning within object-centered system is also 
possible, allowing us to attentionally prioritize 
those locations that are relevant within a particu-
lar object independently of its spatiotopic (i.e., 
external world) coordinates.

https://osf.io/cuwxe/
https://osf.io/cuwxe/
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Experiments 1a and 1b: Object-Specific 
Attentional Prioritization

Method

Participants.  Participants were recruited online via the 
local universities’ participant pool through Sona Systems 
(for research credits) and via the online platform Prolific 
(www.prolific.co; fixed payment, £3.34).

Participants recruited via the local participant pool 
were Dutch and international bachelor students enrolled 
in the psychology program at Vrije Universiteit Amster-
dam. Prescreening criteria for Prolific participants con-
sisted of having a minimal approval rate of 90%, being 
between 18 and 40 years old, and having participated 
in at least 10 studies. There was no restriction based 
on nationality, and hence the sample contained partici-
pants from across the world. For a discussion of the 
reliability of this participant pool, see Peer et al. (2017). 

Prior to the experiments, which were conducted online 
on a JATOS server (Lange et  al., 2015), participants 
provided digital informed consent via Qualtrics (https://
www.qualtrics.com/). Data sets were analyzed only 
when an experiment was completed in full. Because 
we developed this paradigm to study object-based sta-
tistical learning, we had no prior results to predeter-
mine sample size. We chose to collect 80 data sets for 
each experiment after replacement of outliers (see 
below) on the basis of an a priori power analysis (α = 
.05, power = .85) using G*Power (Version 3.1; Faul 
et al., 2007), which yielded a projected sample size of 
76 for the simplest within-group comparison in a study 
with a small to medium effect size (d = 0.35). The ethi-
cal committee of the Vrije Universiteit Faculty of Behav-
ioral and Movement Sciences approved the study, which 
conformed to the Declaration of Helsinki.

The final sample in Experiment 1a (mean age = 22 
years, range = 18–37; 57 female) was obtained after 

30–60 ms
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750 ms

90°

0°180°

270°

90°

0°180°

270°

150 ms Response

Fig. 1.  Schematic of the experimental procedure. On each trial, an object (either a hammer or a shoe, presented in separate blocks) was 
shown in one of four orientations. Across all three experiments (all Ns = 80), participants responded to the orientation of the target letter T 
(tilted left or right) while ignoring an L-shaped distractor. To induce statistical learning in biased blocks in all orientations, we made sure that 
the target letter appeared in one part of the object with a higher probability (67.5%). In Experiment 1a, both objects shared the same high-
probability location. In Experiment 1b, only half of the experiment contained biased blocks; in the remaining neutral blocks, the object was 
presented without a spatial imbalance. By contrast, in Experiment 2, in neutral blocks, the axes alongside which the objects were presented 
changed from the cardinal axes (i.e., 0°, 90°, 180°, 270°) to the intercardinal axes (i.e., 45°, 135°, 225°, 315°) or vice versa. The design of 
Experiment 2 thus allowed us to test whether learned prioritization at the high-probability object locations would generalize to new viewpoints 
in which learning did not take place during a test phase.

www.prolific.co
https://www.qualtrics.com/
https://www.qualtrics.com/
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replacing three participants who were identified as out-
liers (one on the basis of overall reaction times [RTs] 
and two on the basis of overall accuracy; > 2.5 SD from 
the group mean). The final sample in Experiment 1b 
(mean age = 24 years, range = 18–40; 55 female) was 
obtained after replacing five participants who were 
identified as outliers (two on the basis of overall RTs 
and three on the basis of overall accuracy).

Task, stimuli, and procedure.  Because the experi-
ment was conducted online, and we thus had little con-
trol over the experimental setting, we will report pixel 
values to describe the stimuli for replication purposes. 
The experiment was created in OpenSesame (Version 3; 
Mathôt et al., 2012) using OSWEB (Version 1.4).

Each trial started with a 750-ms white fixation dis-
play, in which a black-and-white circular fixation point, 
as designed by Thaler et al. (2013), was shown at the 
center of the screen. Subsequently a placeholder screen 
appeared in which one of the objects (i.e., a shoe or a 
hammer; see Fig. 1) was presented in one of four ori-
entations (i.e., rotated 0°, 90°, 180°, or 270°) for a ran-
domly jittered duration (30–60 ms). Embedded within 
the objects were two gray placeholder circles (radius = 
10 pixels) at both sides of the object (90 pixels away 
from fixation). Within these gray circles, two black let-
ters, a T and an L, rotated left or right and up or down, 
respectively (counterbalanced across trials), appeared. 
To prevent eye movements during visual search, we 
made the target letters visible for only 150 ms (Heeman 
et  al., 2019). During the response period, the object 
remained on screen until response with a time-out of 
2,000 ms. Critically, targets appeared with a higher 
probability (62.5%) at one side of the object (counter-
balanced across participants). This spatial imbalance 
was the same for each of the four object orientations, 
which were randomly intermixed across trials.

In Experiment 1a, the search object switched from a 
hammer to a shoe, or vice versa, halfway through the 
experiment (order counterbalanced across participants), 
whereas the high-probability location of the object did 
not change. By contrast in Experiment 1b, only one of 
the objects had a spatial imbalance, and thus half of the 
experimental blocks contained an object with a high-
probability location (order counterbalanced across par-
ticipants), whereas in the other object, the target appeared 
with equal probability at both sides of the object (biased 
object counterbalanced across participants).

Participants were instructed to keep their eyes on 
fixation and to indicate whether the target letter T was 
rotated left or right using the arrow buttons on the 
keyboard. The experiment consisted of six experimen-
tal blocks of 64 trials each (16 trials for each orienta-
tion), preceded by a series of 15 practice trials without 

a spatial imbalance. The practice block continued to 
repeat until average RT was below 1,100 ms and aver-
age accuracy was above 70%. Participants were encour-
aged to respond as fast as possible while keeping the 
number of errors to a minimum, and they received 
feedback on their performance (i.e., mean RT and accu-
racy) at the end of each block. After the last block, 
participants were asked to indicate whether they 
noticed the spatial imbalance, to indicate which of the 
two objects contained this spatial imbalance, and to 
indicate whether there was a higher probability that the 
top or the bottom of the selected object contained the 
target letter.1

Data analysis.  Search-time analyses were limited to 
data from trials with correct responses only. RTs were 
filtered in a two-step trimming procedure: Trials with RTs 
shorter than 200 ms were excluded, after which data 
were trimmed on the basis of a cutoff value of 2.5 stan-
dard deviations from the mean per participant. Exclusion 
of incorrect responses (10.9% and 9.2% in Experiments 
1a and 1b, respectively) and data trimming (2.4% and 
2.4% in Experiments 1a and 1b, respectively) resulted in 
an overall loss of 13.2% and 11.6% of trials in Experi-
ments 1a and 1b, respectively. Remaining RTs were ana-
lyzed with repeated measures analyses of variance 
(ANOVAs), and reported p values are Greenhouse-Geiser 
corrected in case of sphericity violations. ANOVAs were 
followed by planned comparisons with paired-samples t 
tests using JASP software ( JASP Team, 2018). In case of 
nonsignificant findings, we also report the Bayes factor 
(BF) in support of the null model. In case of interactions, 
this factor represents the model comparisons between 
models that contain the effect and equivalate models 
stripped of the effect (BFexcl).

Results

Experiment 1a: object-based statistical learning.  
To examine whether high-probability target locations 
within objects were prioritized for selection, we con-
ducted a repeated measures ANOVA with the within- 
subjects factors target location (high probability, low 
probability) and image order (Object 1, Object 2). As 
visualized in Figure 2a, target letters were identified faster 
in high- relative to low-probability target locations within 
the objects, F(1, 79) = 5.5, p = .021, ηp

2 = .066. Although 
overall responses were faster to the second object (i.e., 
second half of the experiment), F(1, 79) = 6.1, p = .016, 
ηp

2 = .072, reflecting a general practice effect, there was 
no evidence that learned prioritization differed as a func-
tion of whether the biased object was the first or the 
second object that was encountered—interaction: F(1, 
79) = 0.23, p = .63, ηp

2 = .003, BFexcl = 5.1. A repeated 
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measures ANOVA with the within-subjects factors target 
location (high probability, low probability) and object 
(hammer, shoe) also did not yield a reliable interaction, 
F(1, 79) = 0.19, p = .67, ηp

2 = .002, BFexcl = 5.5, showing 
that the learned prioritization at high-probability target 
locations also did not differ between objects. Critically, 
whereas overall response times were faster for objects in 
the horizontal than the vertical plane—main effect of ori-
entation: F(2.4) = 9.1, p < .001, ηp

2 = .10—learned priori-
tization also did not differ between orientations—interaction: 
F(2, 158) = 0.26, p = .77, ηp

2 = .003, BFexcl = 45.1.

Experiment 1b: object-specific prioritization.  To 
further corroborate the object-based statistical learning 
observed in Experiment 1a, we constructed Experiment 
1b so that only one of the objects contained a spatial 
imbalance, whereas in the other object, the target appeared 
with equal probability across locations. As visualized in 
Figure 2b, a repeated measures ANOVA with the within-
subjects factors object (biased, neutral) and target location 
(high probability, low probability) yielded a reliable inter-
action, F(1, 79) = 5.90, p = .017, ηp

2 = .069, again reflecting 

a difference between high- and low-probability target 
locations in the biased objects, t(79) = 2.5, p = .016, d = 
0.28, but critically not in the neutral objects, t(79) = 0.8,  
p = 0.43, d = 0.088, BF01 = 6.0. Also, when the analyses 
were limited to biased blocks, learned prioritization again 
did not differ between orientations—interaction: F(2, 201) = 
0.69, p = .54, ηp

2 = .009, BFexcl = 23.5.
After having established that participants learned to 

prioritize specific parts of the biased object, we explored 
whether this effect generalized to neutral objects (that 
were clearly distinct from the biased object; e.g., hammer 
→ shoe). For this purpose, we limited the analyses to 
participants who started the experiment with the biased 
object. In line with the main analysis, results showed 
no evidence that the part of the object that was priori-
tized in the first half of the experiment (e.g., bottom of 
shoe) continued to be prioritized when the object 
switched (e.g., bottom of hammer), not even in the first 
block, t(40) = 0.48, p = .64, d = 0.075. Together, these 
findings demonstrate that participants learned to priori-
tize specific parts of the objects irrespective of the spe-
cifics of the object and the viewpoint of those objects.
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Fig. 2.  Learned attentional prioritization at high-probability object locations in Experiments 1a and 1b. Mean response 
time is shown for (a) each object location in Experiment 1a and (b) each block type and object location in Experiment 
1b. Solid and dashed bars indicate high- and low-probability object locations, respectively. The height of each bar 
reflects the population average, and error bars represent 95% within-subjects confidence intervals (Morey, 2008). Data 
from each participant are represented as gray dots. Lines connect each individual participant’s performance. Asterisks 
indicate significant between-condition differences (p < .05). 
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Experiments 1a and 1b: intertrial repetition effects.  
A concern in studies examining location-probability learn-
ing is that results may reflect intertrial priming instead of 
statistical learning across longer timescales (Maljkovic & 
Nakayama, 1994; van Moorselaar et al., 2021). Unlike in 
previous studies, however, here the high-probability loca-
tion was not static because it depended on the orientation 
of the object. Indeed, because the object rotated across 
orthogonal axes, each retinotopic location contained the 
target with equal probability. Nevertheless, we also exam-
ined whether the observed benefit at the high-probability 
object location was modulated by intertrial spatial priming 
(by collapsing the data from biased blocks in Experiments 
1a and 1b). Critically, the difference between high- and 
low-probability locations remained reliable when we 
excluded all trials in which the target appeared at the same 
retinotopic locations as in the preceding trial (12.2%), 
t(159) = 2.35, p = .02, d = 0.19. These findings demonstrate 
that the observed effects reflect object-based statistical 
learning over longer timescales rather than intertrial prim-
ing effects.

Experiments 1a and 1b: awareness of the high-
probability target location.  Numerous studies have 
shown that the extraction of regularities from the environ-
ment and the adaptations to these regularities can pro-
ceed without the intention to learn and without conscious 
awareness (Perruchet & Pacton, 2006; Turk-Browne, 
2012). Yet in visual search experiments manipulating spa-
tial target probabilities, awareness as probed by post hoc 
questionnaires is typically relatively high. To examine 
whether the observed speedup at high-probability object 
locations was modulated by explicit knowledge, we asked 
participants at the end of the experiment whether they 
noticed the spatial imbalance and to indicate which part 
of the object had a higher target probability. Of the 51 
participants who indicated that they noticed the spatial 
imbalance, only 26 (16 and 10 in Experiments 1a and  
1b, respectively) correctly identified the high-probability 
location. Excluding these participants did not change the 
overall effect, t(133) = 2.58, p = .011, d = 0.22. Although 
this does not rule out the possibility that participants had 
some explicit knowledge regarding the underlying manip-
ulation (Vadillo et al., 2020; Vicente-Conesa et al., 2022), 
it appears that the observed prioritization did not reflect a 
deliberate strategy but instead suggested implicit statisti-
cal learning.

Experiment 2: Transfer of  
Object-Based Statistical Learning

Although the results from Experiment 1 confirmed that 
participants can learn to prioritize specific parts within 

an object, it remained unclear whether the learned pri-
oritization was specific to display configurations in 
which learning took place or whether it continued to 
be applied when that same object was presented in a 
new viewpoint. That is, in the experiments thus far, all 
orientations contained the spatial imbalance. In Experi-
ment 2, to test whether learned object prioritization 
generalizes to new viewpoints once it is in place, we 
presented the same object in four novel orientations 
that participants had never seen before after a learning 
phase. Critically, in this transfer phase, the spatial 
imbalance was removed, allowing us to test whether 
learned prioritization within an object remains in place 
when the object is presented in an orientation in which 
learning never took place.

Method

The methodology of Experiment 2 was identical to that 
of Experiment 1, except for the following changes. The 
final sample (mean age = 27 years, range 19–38; 30 
female) was obtained after we replaced five participants 
who were identified as outliers (two on the basis of 
overall RTs and three on the basis of overall accuracy). 
Only a single object was presented throughout the 
entire experiment (counterbalanced across partici-
pants), with the spatial imbalance being present only 
in the first five blocks. In the final block, we not only 
removed the spatial imbalance but also changed the 
axes alongside which the objects were presented, with-
out any explicit instructions, from the cardinal axes 
(i.e., 0°, 90°, 180°, 270°) to the intercardinal axes (i.e., 
45°, 135°, 225°, 315°) or vice versa (counterbalanced 
across participants2). Finally, at the end of the experi-
ment, participants were asked to indicate whether they 
noticed the spatial imbalance (yes/no), to indicate 
whether they noticed that this spatial imbalance was 
removed when the axes changed (yes/no), and to indi-
cate which part of the object had a higher probability 
of containing the target. Exclusion of incorrect responses 
(9.3%) and data trimming (2.4%) resulted in an overall 
loss of 11.7% of trials.

Results

To examine whether high-probability object locations 
continued to be prioritized after learning when seen 
from different viewpoints, we first entered RTs into a 
repeated measures ANOVA with the within-subjects fac-
tors block (biased, neutral) and target location (high 
probability, low probability, where locations were arti-
ficially coded in neutral blocks as high and low on the 
basis of their status in the biased blocks). As visualized 
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in Figure 3a, targets were again detected faster at high- 
relative to low-probability object locations—main effect 
of target location: F(1, 79) = 5.27, p = .024, ηp

2 = .063. 
Critically, although overall RTs were reliably slower in 
the neutral block—main effect of block: F(1, 79) = 
18.16, p < .001, ηp

2 = .19, arguably because of the sur-
prise caused by the introduction of new object orienta-
tions, the Block × Target Location interaction failed to 
reach significance, F(1, 79) = 3.02, p = .086, ηp

2 = .037, 
suggesting that the learned prioritization in the biased 
blocks indeed transferred to the neutral blocks.

Although the lack of an interaction is consistent with 
the idea that the learned effect in the biased blocks 
generalized to new orientations in the neutral block, it 
should be noted that the interaction was trending, and 
a Bayesian analysis yielded only moderate evidence 
against a model including the interaction term outper-
forming a two-main-effects model (BFexcl = 4.0). Also, 
planned pairwise comparisons yielded a reliable differ-
ence between the high- and low-probability locations 
in the biased blocks, t(79) = 3.35 p = .001, d = 0.37, but 
not in the neutral blocks, t(79) = 1.04, p = .30, d = 0.12. 
Therefore, we further explored the transfer of learned 

prioritization across individual participants. As visual-
ized in Figure 3b, there was a relatively strong and 
reliable correlation between the learned benefit in the 
biased blocks and the observed difference between the 
high- and low-probability object locations in the neutral 
blocks, Pearson’s r(78) = .55, p < .001. Although this 
correlation was slightly attenuated, it remained highly 
robust after we excluded seven outliers on the basis of 
a 1.5 interquartile rule, Pearson’s r(71) = .49, p < .001. 
This correlation highlights that those participants in 
which object-based statistical learning was most pro-
nounced also showed the largest transfer to the neutral 
blocks. Indeed, a pairwise comparison between the 
high- and low-probability object locations in the neutral 
blocks limited to those participants in which learning 
took place in the biased blocks (i.e., RT biased high < 
RT biased low) showed reliably faster RTs at the high- 
than the low-probability location, t(48) = 3.38, p = .001, 
d = 0.48.

Of the 27 participants who indicated that they 
noticed the spatial imbalance, 20 correctly identified 
the high-probability location. As is clearly visible in 
Figure 3b, the transfer from biased to neutral blocks 
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did not differ between participants classified as aware 
and those classified as unaware. Indeed, the observed 
speedup at high-probability object locations in the 
biased blocks, although only marginal, remained reli-
able when these aware participants were excluded, 
t(59) = 1.99, p = .051, d = 0.26. Together, these findings 
demonstrate that once a regularity is learned, the result-
ing attentional prioritization at high-probability loca-
tions continues to be applied without any clear intention 
in new locations that were not yet encountered and 
hence in which learning never took place.

General Discussion

The current results add to a growing body of findings 
demonstrating that the visual system is not only remark-
ably sensitive to regularities in the environment but 
also adjusts attentional priority in response to these 
regularities. Previous research has demonstrated that 
spatial locations can be prioritized as a function of 
selection history (Ferrante et al., 2018; Jiang, Swallow, 
& Rosenbaum, 2013; Jiang, Swallow, Rosenbaum, & 
Herzig, 2013; Sauter et  al., 2019; Wang & Theeuwes, 
2018) and that this specific priority landscape can be 
dynamically adjusted as a function of time (Boettcher 
et al., 2022; Xu et al., 2021). Recently, it was also dem-
onstrated that statistical learning is structured by target-
object category such that the targets that matched 
recently encountered within-category regularities (e.g., 
red bag packs) were located faster in a categorical 
search task (Bahle et al., 2021). Thus, statistical learning 
not only adjusts priority in time and space but also 
exerts strong control over the instantiation of category-
based attentional templates for subsequent visual 
searches. The present study adds to this literature, dem-
onstrating for the first time that within particular object 
representations, the visual system may develop a pref-
erential bias for specific (relevant) parts of that object.

It is important to note that if attentional prioritization 
would have been in retinotopic (world-centered) coor-
dinates only, there would be no attentional bias in the 
current experimental setup because the target was pre-
sented with equal likelihood at all retinotopic locations. 
Previous findings of attentional prioritization resulting 
from statistical learning were explained in terms of 
weight changes within the spatial priority map; specifi-
cally, that locations that were more likely to contain a 
target were upregulated, and locations that were likely 
to contain a distractor were downregulated (Theeuwes 
et al., 2022). The current findings demonstrate that in 
addition to statistical learning in a spatiotopic reference 
frame, object-centered attentional systems may also inde-
pendently adjust attentional priority in response to object 
regularities. Previous studies have already demonstrated 

a coexistence of retinotopic and object-centered repre-
sentations (Theeuwes et al., 2013; Tipper et al., 1999), 
which is consistent with separate attentional systems for 
visual object processing and spatial processing. Although 
spatiotopic organized priority maps are associated with 
the dorsal “where” pathway, object processing is linked 
to the ventral stream in inferior temporal cortex (Mishkin 
& Ungerleider, 1982; Ungerleider & Haxby, 1994). These 
separate pathways thus allow, at any moment, for the 
coexistence of separate attentional systems that, as 
shown by the current findings, both tune their priority 
to regularities in the environment.

Experiment 2 is critical in that it shows that priority 
biases within a particular object that were learned from 
one viewpoint generalize to all other viewpoints, even 
to those that the participant never saw before. For 
example, if participants learned to prioritize the head 
of a hammer when the hammer was presented along 
the vertical axis (e.g., straight up or straight down), this 
preference remained in place even when the hammer 
was presented at a 45° angle, despite participants never 
having learned to prioritize the head of the hammer 
when presented in this orientation. The observation 
that those participants showing the strongest object-
based statistical learning also showed the largest trans-
fer to novel orientations highlights the strength of 
object-based statistical learning. This experiment con-
firms that there is a generalization of attentional priority 
with objects that is independent of the viewpoint in 
which these biases were learned.

Even though this across-viewpoint transfer of learned 
regularities highlights the strength of object-based sta-
tistical learning, it should be noted that the within-
object benefits were relatively small across experiments 
(ΔM = ~9 ms). Given that the effects of statistical learn-
ing on attentional selection are usually much larger (see 
Theeuwes et al., 2022, for a review), one may question 
the functional significance of within-object statistical 
learning. That being said, it should be realized that 
studies investigating object-based attention effects typi-
cally report smaller effects than studies investigating 
spatial attention. Indeed, the first study that demon-
strated object-based attention effects reported an 
object-based effect of 13 ms (Egly et  al., 1994), and 
other paradigms using variants of the classic paradigm 
reported similar effects between approximately 10 ms 
and 20 ms (Hecht & Vecera, 2007; Moore et al., 1998). 
Even though the current paradigm is clearly different 
from the standard object-based attention paradigms, it 
may therefore not be that surprising that within-object 
effects are smaller compared with learned spatial atten-
tional biases. Nevertheless, the current finding is the 
first demonstration that in addition to space-based  
statistical learning, the visual system can also generate 
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attentional biases independent of the spatial coordi-
nates of the specific object in space.

It is important to note that most participants were not 
aware of the spatial imbalance that was present in the 
display. Even though most studies investigating statisti-
cal learning and visual search have reported little to no 
awareness of the regularities present in the display (see 
Theeuwes et al., 2022), in the current experiment, one 
may have expected higher awareness because each 
object contained only two relevant locations. It could 
be argued that under such conditions, participants 
would notice that the target is more likely to be pre-
sented at one location and therefore not at the other. At 
the same time, however, it should be noted that the 
spatial imbalance was quite subtle (62.5% at the high-
probability location), and objects appeared randomly in 
one of four orientations, which makes the spatial imbal-
ance less apparent. Critically, when all participants who 
showed some awareness of the imbalance were removed 
from the analysis, the results remained basically the 
same. This implies that awareness of the imbalance in 
the display plays no role in learning (see also Gao & 
Theeuwes, 2022), and it strengthens the notion that 
these object-based effects are not strategic in origin.

We claim that through statistical learning the weights 
within the spatial priority map are adjusted such that 
relevant locations are upregulated, whereas irrelevant 
locations are downregulated (Theeuwes et al., 2022). 
Critically, this spatial priority map is generally assumed 
to be retinotopically organized because this is an effec-
tive principle for initial visual processing allowing for 
a coherent spatial binding of features across various 
cortical areas (Itti & Koch, 2001; Zelinsky & Bisley, 
2015). Yet the prioritization within objects reported 
here cannot rely on retinal coordinates but instead must 
be object-based. Consistent with this notion of an 
object-based priority map are findings demonstrating 
that some neurons in the ventral intraparietal area 
respond to the location of an object in space instead 
of to the location on the retina (e.g., Duhamel et al., 
1997). We have to assume, therefore, that prioritization 
occurs only after the object has been identified (within 
the ventral stream) and priority maps associated with 
the object have been recruited to bias attention toward 
a particular location within the object.

Although our results support the idea that observers 
could learn to prioritize specific parts of an object, it 
should be noted that the viewing conditions in our 
experiments differed substantially from our real-world 
interactions with objects. Here, we changed viewpoints 
by rotating the object, whereas in real-life, such view-
point changes usually result from a change of perspec-
tive initiated by the observer (e.g., as a result of 
movement). Such user-initiated viewpoint changes 

could be mimicked in future research using virtual real-
ity (Snow & Culham, 2021). Moreover, we not only 
limited learning to only two objects but also used the 
same exemplar of each object throughout the entire 
experiment. By contrast, in real life, we constantly 
encounter different variants of specific object catego-
ries. To establish higher ecological validity, future 
research should both include a larger variety of objects 
and test whether learning is specific to the object exem-
plar containing the regularity or also generalizes to 
other object exemplars (e.g., other type of hammers).

In sum, the current findings show that participants 
are not limited to learning attentional biases within 
space-based representation (retinotopic coordinates 
relative to the participant) but can also learn atten-
tional biases that are object-based, operating indepen-
dently of the spatial coordinates of the specific object 
in space.
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Notes

1. Because of a programming error, the exit questionnaire in 
Experiment 1a was identical to the questionnaire in Experiment 
1b; hence for Experiment 1a, we report only the response to the 
first and final question.
2. Because of a counterbalancing error, the final sample con-
tained nine observations in which the intercardinal-axes objects 
had the front of the shoe as the high-probability location and 11 
observations where the cardinal axes had the back of the shoe 
as the high-probability location.
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