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 2 
Abstract  
Through statistical learning, humans are able to extract temporal regularities, using the past to 

predict the future. Evidence suggests that learning relational structures makes it possible to 

anticipate the imminent future; yet, the neural dynamics of predicting the future and its time-

course remain elusive. To examine whether future representations are denoted in a temporally 

discounted fashion, we used the high-temporal-resolution of electroencephalography (EEG). 

Observers were exposed to a fixed sequence of events at four unique spatial positions within 

the display. Using multivariate pattern analyses trained on independent pattern estimators, we 

were able to decode the spatial position of dots within full sequences, and within randomly 

intermixed partial sequences wherein only a single dot was presented. Crucially, within these 

partial sequences, subsequent spatial positions could be reliably decoded at their expected 

moment in time. These findings highlight the dynamic weight changes within the assumed 

spatial priority map and mark the first implementation of EEG to decode predicted, yet 

critically omitted events. 

 

 

 

Impact statement 
Utilizing high-temporal-resolution EEG, the dynamic weight changes of assumed spatial 

priority map were visualized by decoding the spatial position of expected, yet omitted, events 

at their expected moment in time. 
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 3 
Introduction 
 
An essential aspect of our capacity to perceive and interact with the visual environment lies in 

our ability to discern recurrent patterns from past experiences and utilize them to forecast future 

occurrences, thereby guiding our actions. Critically, our ever-evolving surroundings, filled 

with abundant information, maintain structure and stability. For instance, through extensive 

practice in specific ball sports, we acquire the skill to predict the ball’s trajectory, enabling us 

to anticipate its future position and precisely intercept it when the need arises. At the behavioral 

level, the benefits of such sequence learning is demonstrated through the serial reaction time 

(SRT) task pioneered by Nissen and Bullemer (1987), wherein a single stimulus is sequentially 

presented at various locations (e.g., 4). The critical finding is that, even without any explicit 

awareness, observers can track the current position of the target stimulus (using spatially 

compatible keys) faster when the target follows a particular repetitive sequence compared to a 

random sequence. Subsequent experiments demonstrated that this learning could not be 

attributed to response-response or stimulus-response associations (see Schwarb & Schumacher, 

2012 for a review) as learning persisted even when the motor component was removed 

(Remillard, 2003). Thus, unintentionally, human observers learn perceptual regularities, 

leading to more efficient processing of expected sensory events. 

 In more recent years, it has become clear that such perceptual learning is not restricted to 

sequentially presented individual shapes and associated responses, as observers can also learn 

spatial associations across trials during visual search (e.g., Boettcher et al., 2022; Li et al., 2022, 

2023; Li & Theeuwes, 2020; Li et al., under review; Toh et al., 2021). For example, in Li and 

Theeuwes (2020), the target appeared with equal probability across all display locations, yet 

critically, two across-trial regularities regarding target locations were introduced so that the 

target presented at a specific location (e.g., left side of the display) was always followed by a 

target at the opposite display location. While most participants were unable to explicitly report 

these across-trial regularities, performance on predictable trials was nevertheless facilitated 

(i.e., faster RTs and higher accuracies) compared to unpredictable trials. This type of learning 

was classified as a form of statistical learning — a process by which observers extract statistical 

regularities in the environment from past experiences (see Frost et al., 2019; Theeuwes et al., 

2022 for a review). When observers optimize their visual search performance according to the 

learned regularities that exist in the display, it is often claimed that through statistical learning 

the weights within an assumed spatial priority map change such that attention becomes biased 
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 4 
towards locations where the target appears with a higher probability (e.g., Fecteau & Munoz, 

2006; Ferrante et al., 2018; Theeuwes et al., 2022; Zelinsky & Bisley, 2015). Notably, in 

across-trial statistical learning the regularity is occurring across trials suggesting that local 

weight changes within the assumed priority map dynamically adapt on the basis of the trial-to-

trial probabilities. 

 In this perspective the attentional priority landscape is not inherently a static representation 

constructed by previous selection episodes, but instead it operates as a dynamic system, 

wherein attentional priority undergoes continual adjustments based on anticipations triggered 

by the current event. This dynamic view on attentional priority, wherein the current state 

predicts the upcoming (future) states, is reminiscent of the successor representation framework 

(SR, Dayan, 1993). This framework postulates a predictive representation wherein the current 

state is represented in terms of its future (successor) states, in a temporally discounted fashion. 

While the SR framework was originally conceptualized in the context of hippocampal 

representations (e.g., Dayan, 1993; Fang et al., 2023; Stachenfeld et al., 2017), a recent 

functional magnetic resonance imaging (fMRI) study by Ekman et al. (2023) showed that after 

visual sequence learning, not only the hippocampus, but also V1 receptive fields became tuned 

to respond to both the current input, as well as expected future events. The fact that 

reactivations of future sequence locations were also observed in early visual cortex suggests 

that the successor representations are a more ubiquitous coding schema than previously 

assumed.  

 The evidence above highlights that the relational structure, for instance that event A is 

usually followed by event B, that is learned through exposure during past experiences is not 

passively represented, but instead is actively used to anticipate the imminent future. Consistent 

with this, previous research has repeatedly shown that prior expectations influence neural 

activity in the visual cortex (e.g., Fiser et al., 2016; Kok et al., 2013; Kok et al., 2012). Yet, in 

the context of learned spatial associations the time course of these effects remains largely 

unexplored, and it thus also remains unclear how and when the current representation shapes 

future representations in the context of spatial associations. As Ekman et al. (2023) employed 

fMRI as a way to measure brain activity, the temporal dynamics of the observed reactivations 

remain elusive. Therefore, in the current study, we relied on the high temporal resolution of 

electrophysiology (EEG) to investigate the temporal dynamics of anticipating future events. 

Previous research has demonstrated that the expected neural representation induced by 
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 5 
probability cues on a trial-by-trial basis is already activated prior to actual stimulus onset (Kok 

et al., 2017). Here, we specifically set out to test whether stimulus presentation within a 

structured sequence also serves as a cue that triggers the retrieval of successor locations.  

 

 

Figure 1. Stimuli and design in sequence blocks and pattern estimator blocks. (a) Illustration of 

sequence blocks containing full and partial sequence trials. In full sequence trials the white dot was 

presented for 100 ms at one of four positions successively in a fixed order with an inter-stimulus interval 

(ISI) of 200 ms. During partial sequence trials only one dot of the sequence (equal probability for each 

position in the sequence) was presented for 100 ms and all intervals remained the same as full sequence 

trials. (b) Illustration of target (i.e., gray dot detection) frame. (c) Graphical illustration of the eight 

possible dot locations, out of which only four were shown in full and partial sequence trials. (d) During 

random pattern estimator blocks, the white dot was presented at one of eight possible locations (as 

illustrated in Figure 1c) for 100 ms in random order with an ISI of 600 ms in long-ISI blocks and of 

100 ms in short-ISI blocks. 
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 6 
 To test this, we adopted the sequence learning task of Ekman et al. (2023). Participants 

were exposed to an arbitrary spatiotemporal sequence of dots (see Figure 1) consisting of four 

items (A-B-C-D). Critically, after a training phase with repeated exposure to the sequence, we 

randomly intermixed full sequences with partial sequences, wherein only a single stimulus of 

the sequence appeared on screen at its expected moment in time (e.g., - B - -). Using time-

resolved multivariate pattern analyses, we were able to test whether merely presenting one of 

the items in a learned sequence would trigger activation at the successor locations (e.g., C and 

D) and critically for the current study, if so, at what moment in time.  

 

 

Results 
 

While recording EEG and gaze behavior, participants (N = 25) had to detect each time a white 

dot turned grey within a fixed four-position dot sequence (i.e., ABCD; Figure 1a/b). 

Unbeknownst to participants these rare events only occurred at the final sequence position. 

Critically, after an initial exposure phase to familiarize participants with the sequence order, 

partial sequences, wherein only a single stimulus of the sequence was presented at its expected 

moment in time (e.g., -B--), were randomly intermixed into these full sequences (Figure 1a; 

see Methods section for details). This design allowed us to establish whether, and critically if 

so when, presenting a single item of a learned sequence would trigger the retrieval of successor 

locations within that sequence (Ekman et al., 2023).  

 

Within-block decoding: Increasing the interval between successive stimuli enhances 

performance 

Before delving into the neural representations of specific positions within the sequence, 

including both present and absent dots, we initially ensured the robustness of decoding 

individual dot positions using data from independent pattern estimator blocks. Within these 

blocks participants were instructed to passively view a dot stimulus appearing at one of eight 

locations in random order (Figure 1c). Previous studies have successfully employed 

multivariate pattern analyses based on independent pattern estimators with either short (range: 

0-200 ms; e.g., Alilovic et al., 2021; Blom et al., 2020; Robinson et al., 2020) or long (range: 

433-1200 ms; e.g., Hogendoorn & Burkitt, 2018; Kok et al., 2017) ISI’s in between successive 

stimuli. Although these approaches have their own benefits (see Methods for details), here for 
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 7 
the first time we attempted to decode the spatial position of expected dots in the absence of 

visual input. Given that this approach is arguably more challenging due to the event of interest 

not being time-locked to an evoked response, we chose to employ both types of pattern 

estimators to establish whether one type is more suited than the other. As visualized in Figure 

2a, we observed that classifiers trained on data from both pattern estimators could decode 

individual dot positions well above chance level. However, noteworthy distinctions emerged 

between the two distinct pattern estimator conditions. The long-ISI pattern estimator decoding 

demonstrated superior overall classification performance, with subsequent peaks in decoding 

occurring at later time points (the short-ISI pattern estimator displayed an initial peak at 

approximately 88 ms, while the long-ISI pattern estimator showed an initial peak at around 135 

ms). Previous research has established that multiple stimuli within a sequence can be 

simultaneously represented, with each individual stimulus being decodable for approximately 

one second (Carlson et al., 2013; King & Wyart, 2021). Arguably, the signal contamination 

stemming from preceding dots may also account for the observed differences between 

independent pattern estimators, with the sustained influence from preceding dots being more 

pronounced in the short-ISI pattern estimator blocks, where subsequent stimuli are temporally 

closer together compared to the long-ISI pattern estimator blocks. Critically, control analysis 

convincingly demonstrated that this above-chance classification could not be explained by 

systematic eye movements as the same analysis using the x, y coordinates measured by the eye 

tracker did not result in above-chance classification (e.g., Chota et al., 2023; Johnson et al., 

2023).  

 In order to determine whether an individual event automatically triggers the retrieval of 

successive events and pinpoint the timing of this process, our study aimed to decode the spatial 

position of absent, yet anticipated dots. As noted, pattern estimator decoding displayed two 

successive peaks, and it was not immediately clear what cognitive processes these peaks 

represented, and which would be most applicable for position decoding within structured 

sequences. To gain a better understanding of the dynamics of position decoding, we therefore 

employed a generalization across time approach while applying the pattern classifiers (King & 

Dehaene, 2014), wherein a classifier trained at a specific time point is tested on all time points. 

The resulting generalization across time matrix (with training time on y-axis; testing time on 

x-axis) can help identify periods during which a representation remains stable, i.e., generalizes 

across time. As depicted in Figure 2c, both pattern estimators exhibited little to no evidence of 

early off-diagonal decoding, which has been associated with the perceptual maintenance of 
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 8 
early sensory representations (e.g., Marti & Dehaene, 2017; Meijs et al., 2019; Weaver et al., 

2019). Furthermore, in line with Hogendoorn and Burkitt (2018), the temporal generalization 

matrix revealed no above-chance classification performance at the intersections of the distinct 

peaks in diagonal decoding, suggesting that these peaks represent sequential, distinct patterns 

of neural activation (King & Dehaene, 2014).  

Considering that our classifier likely tracked the dynamic transformation from 

representation to another over time, and we had no a priori prediction regarding the optimal 

moment to capture the processing of an anticipated, yet critically missing event, we decided 

not to restrain our cross-block classification (i.e., pattern estimator to structured sequence data 

classification) to a specific time window. Instead, we explored the entire time range using only 

the data from the long-ISI pattern estimator, as that one demonstrated superior decoding. 
 

 
Figure 2. Pattern estimator position (four dots from the sequence) decoding results. The decoder was trained 

and tested at the same time point with posterior electrodes (a), or gaze positions (b) as features. Horizontal 

dashed lines indicate chance level while vertical dashed lines indicate dot onset. Green and red solid lines 

represent long- and short-ISI pattern estimators, respectively. Shaded region represents standard error of the 

mean (SEM, same applied to subsequent figures). Corresponding color bars below the x-axis indicate 

clusters that significantly differed from chance while the black bar indicates clusters with a significant 

difference between long- and short-ISI pattern estimators (p < .05). (c) Temporal generalization matrix, with 
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 9 
posterior electrodes as features, showing classification performance as a function of training and test time 

point in long- and short-ISI blocks. Solid black lines indicate clusters that significantly different from chance 

(p < 0.05). All corresponding results that discriminated eight positions can be observed in Figure 2 – figure 

supplement 1. 

 

Cross-block decoding: predecessor events in a sequence enhance decoding of the current 

event 

Before examining the neural representation of anticipated, yet absent events, we first tested 

whether the data from the pattern estimator sequences could be used to decode present dot 

positions within the structured sequence. For this purpose, time courses of the pattern estimator 

blocks and the main task were aligned relative to dot onset and decoding was performed across 

time, with the model trained on pattern estimator data and tested on main task data, separate 

for full sequences (i.e., BCD) and partial sequences (e.g., -B--). Note that in this analysis, the 

first dot position (i.e., A), which does not allow to dissociate full from partial sequences, was 

not included. As shown in Figure 3a, cross-block classification also showed robust decoding 

of dot position, irrespective of whether the dot was embedded in a full sequence, or whether 

that dot was the only dot presented within the sequence (partial sequences). Notably, while 

clusters of significant decoding exhibited the same temporal dynamics, decoding was more 

pronounced approximately 200 ms following dot onset in the full sequence trials relative to 

partial sequence trials. Although speculative, we attribute this difference in decoding between 

two identical events to a more variable tuning of attention in the partial sequence relative to 

the full sequences. Whereas in the latter attentional shifts are yoked to a sequence of events 

that are fixed in time, attentional tuning arguably became more variable when dots were 

omitted from the sequence, and participants had to thus rely on internally generated 

representations. Consistent with this an exploratory analysis of the event-related waveforms 

elicited by posterior contralateral electrodes showed that especially the N1 component, which 

is linked to the orienting of attention to a task-relevant stimulus and modulated by the time in 

between successive events (Luck et al., 1990) was more pronounced in full than in partial 

sequences (Figure 3b). We then believe that this N1 modulation underlies our observed 

difference in decoding.  
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Figure 3. Position decoding and ERPs results for present dots. (a) Decoding of present dot positions 

(i.e., BCD) based on long-ISI pattern estimator (training and testing at the same time point) using 

posterior electrodes. (b) ERPs for the 8 posterior electrodes contralateral to each present dot position, 

collapsed over dots. The pink and blue lines represent full and partial sequence trials, respectively. 

Corresponding color bars below the x-axis indicate clusters that significantly differed from chance 

while black bars indicate clusters with a significant difference between full and partial sequence trials 

(p < .05). 
 

Cross-block decoding: Expected, but absent (immediate) successor events are 

represented at their expected moment in time  

Having established that we could robustly decode dot positions within the structured sequences 

using independent pattern estimator data, we next examined whether those same spatial 

positions could be decoded when the anticipated dots were omitted from the sequence. For this 

purpose, following Ekman et al. (2023), we categorized omitted dots within partial sequences 

into two conditions: ‘predecessor’ and ‘successor’, based on their position in relation to the 

presented dot. For instance, in the partial sequence, -B--, A would be categorized as a 

predecessor position, while dots C and D would be designated as successor positions. As 

visualized in Figure 4, whereas decoding performance for predecessor locations was at chance 

level, despite the absence of evoked response classifiers were able to reliably classify successor 

locations, with above chance decoding emerging approximately around the time that the 

stimulus should have appeared. Counter to decoding of present dots however, which was 

largely restricted to the diagonal of temporal generalization matrix (Figure 4b), successor 

decoding was more diffuse (Figure 4c), arguably because the temporal predictions were not 

reset by actual stimulus presentation and hence somewhat variable. Next, we explored whether 

the observed successor decoding was observed independent of the temporal distance from the 

presented dot. As shown in Figure 5, whereas the successor representation immediately 
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following the presented dot could be decoded reliably, there was little evidence that the 

subsequent successor representation was also evident in the ongoing EEG signal. Note that 

these results do not necessarily mean that only the immediate successor was actively 

represented, as EEG might simply not be sensitive enough to pick up on these weak and 

temporal diffuse representations. Indeed, the fMRI study by Ekman et al. (2023) showed that 

while all successor representations were represented, activations decreased with increasing 

temporal distance from the present dot. Nevertheless, the current results convincingly 

demonstrate that anticipated events are actively represented at their expected moments in time, 

even without an evoked response elicited by that event.  

 

 
Figure 4. Position decoding results of partial sequence trials. Temporal generalization of decoding 

absent predecessor (a), present (b), and absent successor (c) positions of partial sequence trials based 

on long-ISI pattern estimator using posterior electrodes. Solid black lines indicate clusters that 

significantly different from chance (p < 0.05). 
 

 
Figure 5. Successive position decoding results of partial sequence trials. Temporal generalization of 

decoding the first successor (a) and second successor (b) positions based on long-ISI pattern estimator 

using posterior electrodes. Solid black lines indicate clusters that significantly different from chance (p 

< 0.05). 
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Discussion 
 

Recently, a large body of research has shown that people are able to learn from past experiences 

and apply what is learned to optimize selection (e.g., Duncan et al., 2023; Ferrante et al., 2018; 

Gao & Theeuwes, 2020; Huang et al., 2022; Liesefeld & Müller, 2021; van Moorselaar & 

Theeuwes, 2023; Wang & Theeuwes, 2018; Xu et al., 2022). It was assumed that through 

learning the weights within the assumed spatial priority map are up- and down regulated 

optimizing attentional selection. We have argued that in conditions in which one event predicts 

an upcoming event the weights within this spatial priority map need to be dynamically (from 

trial to trial) adjusted (Li et al., 2022; Li & Theeuwes, 2020). The current study provides direct 

evidence for these dynamic weight changes within the priority map as the presentation of a 

particular stimulus generated neural patterns at the location where the next stimulus was 

expected to be presented. Participants learned an arbitrary spatial sequence consisting of 4 dots 

(A-B-C-D), and after learning, partial sequence trials, wherein only a single dot (e.g., - B - -) 

appeared at its expected moment in time, were intersected with full sequence trials. Using the 

posterior electrodes, we were able to decode the spatial position of expected, yet critically 

omitted stimuli within these partial sequences, visualizing the dynamic weight changes within 

the presumed spatial priority map on a trial-to-trial basis. Our findings are fully consistent with 

those of Ekman et al. (2023) who used fMRI and showed reactivations of future sequence 

locations in both V1 and hippocampus. 

The present findings contribute to an extensive body of literature demonstrating that 

learned associations are actively utilized to predict the imminent future (e.g., Dayan, 1993; 

Ekman et al., 2023; Fang et al., 2023; Stachenfeld et al., 2017). However, studies investigating 

how expectations induce anticipatory activity in early visual cortices (e.g., Ekman et al., 2017; 

Gavornik & Bear, 2014; Hindy et al., 2016; Kok et al., 2012) have yet to clarify whether such 

anticipatory traces represent expected future states in a temporally discounted fashion or solely 

reflect the learned association between different stimuli without the added complexity of a 

temporal structure (e.g., Deuker et al., 2016; Horner et al., 2015; Rolls, 2016). While Ekman 

et al.’s observation that events in the close future were more prominently represented than 

events in the more distant future supports the former account, in that study, the limitations of 

the BOLD approach made it impossible to provide a detailed analysis of how these learned 

predictions evolve over time. In our study, leveraging the high temporal resolution of EEG in 
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conjunction with multivariate analysis, we demonstrate that any stimulus in a fixed, yet 

passively viewed sequence triggers the internal representation of the immediately following 

stimulus in the sequence at its expected moment in time. Crucially, this above-chance 

classification of an expected yet omitted stimulus was achieved by an independent pattern 

estimator trained on the evoked signal elicited by stimuli presented in random order, thereby 

avoiding confounding effects related to prediction. This confirms not only that future 

representations are represented in a temporally discounted fashion but also that the predicted 

future recruits similar neural processes as when viewing those stimuli. 

The finding that learned spatial associations could evoke sensory-like stimulus 

representations in the absence of sensory input aligns with prior studies demonstrating 

decoding of anticipated positions during circular object motion (i.e., clockwise or 

counterclockwise) around fixation. However, there is a crucial difference between previous 

studies using rotating sequences and the current one. Critically, in previous studies, the rotating 

stimulus either induced illusory motion (Hogendoorn & Burkitt, 2018) or participants were 

explicitly instructed to mentally envisage the subsequent dot position each time a sound was 

played (Robinson et al., 2020). In contrast, our stimuli were not only presented in an arbitrary 

visual dot sequence, but this sequence also did not necessitate active planning to anticipate 

different future outcomes. Instead, the sequences were passively viewed, and therefore it is 

unlikely that the internal representations are the result of top-down attention; instead it is likely 

that they are formed automatically and incidentally via statistical learning (Christiansen, 2019; 

Frost et al., 2019). It is generally assumed that statistical learning operates through local weight 

changes in assumed spatial priority maps, enhancing the weights associated with locations 

likely to contain relevant information and downregulating those with a higher distractor 

probability (e.g., Fecteau & Munoz, 2006; Ferrante et al., 2018; Theeuwes et al., 2022; 

Zelinsky & Bisley, 2015). To date, studies examining local weight changes within the priority 

map have did so in paradigms where the learned locations, be it targets or distractors, were 

static across stretches of time (Duncan et al., 2023; Ferrante et al., 2023). By contrast, here the 

dot stimulus moved across space, necessitating a flexible priority landscape. At a behavioral 

level, we have previously shown that while learned attentional biases can be persistent, the 

priority landscape can also be flexibly adjusted across trials if needed, enhancing efficiency 

when a target at a specific location is consistently preceded by a target at the opposite display 

location (Li et al., 2022; Li & Theeuwes, 2020). Although the current study did not require 
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attentional selection for each individual event, attention systematically moved from one 

location to the next, over time, activating the expected event in response to the current event. 

 Although we observed robust generalization from the random pattern estimator to both 

present as well as omitted dots within the structured sequence, there were clear differences in 

the temporal classification dynamics. Whereas decoding of viewed dots was largely restricted 

to the diagonal, suggestive of a chain of distinct generators (King & Dehaene, 2014), 

generalization to internally generated representations mostly relied on two training intervals 

(Figures 4c and 5a): one starting at around 100 ms and the other starting at approximately 200 

ms. In the context of spatial attention, this early interval is related to early sensory/perceptual 

processing (indexed by P1 and N1 ERP components, e.g., Hillyard & Anllo-Vento, 1998), 

whereas the second interval correlates with post-perceptual processes such as attentional 

selection (indexed by N2pc ERPs component, e.g., Luck & Hillyard, 1994). It thus appears that 

both sensory/perceptual and post-perceptual processes underpin the activation of internal 

representations for the anticipated yet omitted stimuli. The fact that these processes generalized 

to relatively large stretches in time in stimulus absent conditions is not surprising given that in 

contrast to evoked signals, internally generated processes are likely to be much more variable, 

resulting in more diffuse time-locked signals (see also Robinson et al., 2020). In line with this 

explanation, the decoding accuracy of present dots was consistently higher when the dot was 

embedded within a full sequence compared to the same dots presented in isolation. This effect 

coincided with a reduction in the N1 elicited by dots in partial sequences. It suggests that 

attention could be precisely tuned to each individual event in full sequences, while this 

attentional tuning became more variable when dots were omitted from the sequence, and 

participants had to rely on internally generated representations. The diffuse nature of these 

internally generated representations might also explain why, in contrast to the Ekman et al. 

(2023), we could only decode the immediate successor representation, but not the subsequent 

representations within the sequence. Although these representations may have been present in 

the signal, the jitter caused by increasing temporal uncertainty arguably attenuated the signal 

to a degree that prevented their retrieval by our pattern estimator.  

 It is generally assumed that the neural signals elicited by successive stimuli with longer 

ISIs are less contaminated than those with shorter ISIs. However, to date this assumption has 

not been empirically tested. In a recent study by Grootswagers et al. (2019), hundreds of 

different images were presented at two different rates without an ISI (i.e., 20 Hz and 5 Hz). It 
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was observed that decoding performance was higher and lasted longer in the 5-Hz condition 

compared to the 20-Hz condition, with no difference in the onset time between the two. Notably, 

the decoders captured category features rather than low-level features, as determined by the 

cross-validation procedure that should generalize to the test images. In comparison, the present 

study focused on decoding a specific low-level feature (i.e., position), making a comparison 

between two relatively slower frequencies. Consequently, our findings align with those of 

Grootswagers et al. (2019), and also provide some suggestions regarding ISIs for future 

decoding studies, especially those aim at decoding low-level features like positions and 

orientations. While the benefit of short-ISI pattern estimator sequences is that they are less time 

consuming, if time permits it may be best practice to use a pattern estimator with longer ISI’s 

as these provide a better model of stimulus specific representations.   

 In conclusion, the present study successfully decoded the positions of omitted anticipated 

dots within a learned spatial sequence, visualizing the dynamic weight changes within the 

presumed spatial priority map on a trial-to-trial basis. We demonstrated that the internal spatial 

representations, shaped by prior experiences, involved both sensory/perceptual and post-

perceptual processes. Our research highlights the brain’s remarkable ability to dynamically 

prioritize and internally generate representations for anticipated locations in a future-oriented 

manner, even in the absence of sensory inputs. These findings help us further understand how 

the brain predicts and optimizes responses to external stimuli in a constantly changing world.  

 

 

Methods 
 

Participants 

The sample size was determined based on previous EEG studies decoding dot positions in a 

circular configuration (Blom et al., 2020; Hogendoorn & Burkitt, 2018; Robinson et al., 2020). 

Twenty-five undergraduate students (22 females and 3 males; Mage = 21.64 years, SDage = 2.36) 

recruited from research pool at the Vrije Universiteit Amsterdam participated in the study in 

exchange for course credit or monetary compensation. Two participants were replaced: one 

due to a poor connection to the earlobe channels, and the other one because of a recording error. 

All participants reported normal or corrected-to-normal visual acuity and gave informed 

consent prior to the start of the experiment. The study was approved by the Ethical Review 
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Committee of the Faculty of Behavioral and Movement Sciences of the Vrije Universiteit 

Amsterdam. 

 

Apparatus 

The experiment was created on a Dell Precision 3640 Windows 10 computer equipped with an 

NVIDIA Quadro P620 graphics card in OpenSesame (Mathôt et al., 2012) using PsychoPy 

(Peirce, 2007) functionality. Stimuli were presented on a 23.8-inch LED monitor (ASUS ROG 

Strix XG248Q; resolution: 1920 × 1080 pixels) at a refresh rate of 240 Hz. Participants were 

seated in a dimly lit room with their head positioned on a chin rest at a viewing distance of 

approximately 65 cm. Behavioral responses were collected via a standard keyboard. EEG 

signals were recorded using ActiView software (Biosemi, Amsterdam, Netherlands), and as 

common for Biosemi, two additional electrodes were used as reference and ground electrodes 

during recording. An Eyelink 1000 eye-tracker (SR Research, Ontario, Canada) sampling at 

1000 Hz was used to on- and off-line monitor the gaze positions of both eyes during the 

experiment. Participants heard a low-volume beep sound from the speaker whenever their 

fixation deviation exceeded 1.5 degrees of visual angle (dva). Each time the participant moved 

away from the chinrest, the eye-tracker was recalibrated via a five-dot calibration procedure 

until the spatial error for each dot position was below 1 dva. Drift correction was applied before 

each block started. 

 

Stimuli and Design 

The paradigm was modeled after Ekman et al. (2023). As illustrated in Figure 1, all stimuli 

were presented on a grey (RGB: 128/128/128) background. To elicit reliable and stable fixation, 

a combination of bull's eye and hair cross (Thaler et al., 2013) was used as the central fixation 

marker (diameter: 0.7 dva; RGB: 0/0/0) which remained visible throughout the entire 

experiment. The stimulus was a white circular dot (diameter: 1.2 dva; RGB: 210/210/210), 

which could appear at any of eight possible locations (i.e., 22.5°, 67.5°, 112.5°, 157.5°, 202.5°, 

247.5°, 292.5°, 337.5° of polar angle from the vertical line, see Figure 1b) at 6.5 dva away 

from fixation. This dot, when present, remained on screen for 100 ms.  

Individual dots were presented in sequence in different block conditions, the main task and 

pattern estimator blocks. In the main task, participants viewed a sequence of four successively 

presented dots (A-B-C-D). As illustrated in Figure 1a (top row), following Ekman et al. (2023), 
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the sequence trajectory was created such that each quadrant was stimulated once per sequence 

and neighboring locations were thus never part of the same sequence. Specifically, the starting 

position of the first dot determined the sequence trajectory such that the second dot always 

appeared 180° away from the starting position; the third dot was presented 90° clockwise from 

the second position; the last dot appeared opposite from the third position. Each participant 

was assigned to one of eight possible sequences. Each dot was shown for 100 ms with an inter-

stimulus interval (ISI) of 200 ms, and individual sequences were separated by a jittered inter-

trial interval (ITI) between 500 and 750 ms. On a small subset of these sequences (i.e., 10% of 

full sequence trials, the last dot was rendered in grey (RGB: 150/150/150) rather than white 

and participants were instructed to detect these grey dot presentations by means of a speeded 

space bar press (timeout 700 ms), while holding fixation at all times. To ensure that these rare 

target trials were relatively evenly distributed across trials within each block, trial order was 

pseudo-randomized with the constraint that consecutive grey dots were separated by minimally 

five sequences. Each time a grey dot was not reported, the text “Be focused!” appeared in red 

for 500 ms at the center of the screen. Also, the ITI following all target present trials was 

extended by 300 ms to reduce the influence on the next trial. The sole purpose of this detection 

task was to keep participants engaged with the stimulus sequences and hence behavioral data 

were not analyzed, and epochs time-locked to grey dot onset were excluded from further 

analysis. 

The main task was separated into four learning blocks and 12 main task blocks. Within 

each learning block, the full sequence was repeated 130 times (out of which 13 contained a 

grey dot at the final position). By contrast, in main task blocks, 88 full sequence trials (out of 

which 9 contained a grey dot at the final position), were intermixed with 44 partial sequences. 

These partial sequences were identical to full sequences, with the difference that only one of 

the four dots in the sequence (with equal probability) was actually displayed (see bottom of 

Figure 1a). The purpose of these partial sequences was to probe neural activations of expected 

events. Sequence order within these main blocks was pseudo-randomized with the extra 

constraint that a partial sequence trial must be preceded by a non-target full sequence and not 

followed by another partial sequence. Feedback containing the hit rate and average response 

times was given at the end of each block.  

 In addition to the main task blocks, we also ran separate pattern estimator blocks, which 

served as an independent source of training data for the multivariate decoding analyses. Within 

these blocks, successive sequences of dots at all 8 possible locations were shown in random 
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order (see Figure 1c), with the restriction that a dot position was never repeated at the crossing 

between sequences. Participants were instructed to keep fixation, while passively viewing these 

randomly concatenated sequences. 

 EEG decoding based on independent pattern estimator blocks has been successfully 

applied, where the ISI in between successive stimuli was either short (range: 0-200 ms; e.g., 

Alilovic et al., 2021; Blom et al., 2020; Robinson et al., 2020) or long (range: 433-1200 ms; 

e.g., Hogendoorn & Burkitt, 2018; Kok et al., 2017), with each approach having their own 

benefits. It has been demonstrated that even a simple flashing stimulus, as also used here, can 

evoke cortical response for ~1 s (Carlson et al., 2013; King & Wyart, 2021) and the advantage 

of pattern estimator with longer ISI’s is that the signal evoked by each individual stimulus is 

less contaminated by evoked responses from preceding stimuli. By contrast, the benefit of 

short-ISI pattern estimator, apart from being less time consuming, the high rate of stimulus 

presentations also makes them less susceptible to systematic eye movements. Since this is the 

first time, we have attempted to decode the spatial position of expected dots in the absence of 

visual input, which is arguably more challenging due to the event of interest not being time-

locked to an evoked response, we chose to employ both type of pattern estimators to establish 

whether one type is more suited than the other. To balance the length of ISI on long-ISI blocks 

and the length of the entire experiment, we chose an ISI of 600 ms for long-ISI blocks and an 

ISI of 100 ms for short-ISI blocks.  

 The three long-ISI pattern estimator blocks (50 trials each, ~4.7 min) were introduced at 

the start of the experiment such that the longer ISI’s were not contaminated by learned 

anticipations in response to structured sequences. Subsequently, participants completed four 

learning blocks (~4 min/block) to introduce them to the structured sequence. Then, following 

previous work (Kok et al., 2017; Robinson et al., 2020) every short-ISI pattern estimator block 

(25 trials each, ~0.7 min) was interleaved with two main blocks (i.e., intermixed full and partial 

sequences). In total there were thus 300 pattern estimator sequences (i.e., 8 unique positions in 

random order), divided into three long-ISI blocks and six short-ISI blocks. For each participant, 

the entire experiment including preparation lasted about three hours.  

 

Analysis scripts 

All preprocessing and subsequent analyses were conducted in a Python environment, using 

custom-written scripts based on functions from MNE-python (Gramfort et al., 2013), 
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PyGazeAnalyser (Dalmaijer et al., 2014) and scikit-learn (Pedregosa et al., 2011) modules. The 

scripts are available at https://github.com/dvanmoorselaar/DvM. 

 

EEG recording and preprocessing 

EEG data were acquired at a sampling rate of 512 Hz, using a 64-electrode cap with electrodes 

arranged according to the international 10-10 system (Biosemi ActiveTwo system; and two 

external electrodes placed on earlobes (used as an offline reference). Horizontal and vertical 

electrooculogram (HEOG and VEOG) were recorded via external electrodes located ~1 cm 

lateral to the outer canthi, and ~2 cm above and below the right eye, respectively. Recordings 

were filtered online with a high-pass filter of 0.16 Hz and a low-pass filter of 100 Hz. As an 

initial preprocessing step, EEG data was referenced to the average signal recorded over the left 

and right earlobe, and subsequently a zero-phase shift finite impulse response (FIR) high-pass 

filter at 0.01 Hz (van Driel et al., 2021) was applied to remove slow drifts. 

 Before cleaning, malfunctioning electrodes (M = 0.6, SD = 0.91) marked during recording 

were temporarily removed. Continuous EEG signals was epoched from −100 ms relative to the 

onset of a full sequence until the end of that sequence. Given that we had sequences of various 

lengths this resulted in epochs of various lengths (−100 to 1200 ms for full and partial 

sequences; −100 to 1700 ms for short-ISI pattern estimator sequences; −100 to 5200 ms for 

long-ISI pattern estimator sequences), which were all preprocessed independently. All epochs 

were extended by 500 ms at the start and end of the epoch to control for filter artifacts during 

preprocessing. First, independent component analysis (ICA) as implemented in MNE 

(method=‘picard’) was fitted on 1-Hz high-pass filtered epochs to remove eye-blink 

components from the 0.01-Hz filtered epochs. Second, an automatic artifact-rejection 

procedure was used to detect electromyography (EMG) noise. Specifically, the epochs were 

band-pass filtered at 110−140 Hz and transformed into a z-score threshold per participant based 

on the within-subject variance of z-scores (de Vries et al., 2017). Epochs that exceeded the 

threshold within the time window of interest were flagged (Duncan et al., 2023). To decrease 

the number of false alarms, for each marked epoch, the five electrodes that contributed most to 

accumulated z-score were identified. Then these electrodes were interpolated one by one using 

spherical splines (Perrin et al., 1989), checking after each interpolation whether the data still 

exceeded the threshold. Epochs were only excluded if the z-score threshold was still exceeded 

after this iterative procedure, which resulted in an average rejection of 5.85% (SD: 6.44%) of 
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full/partial sequences, 14.37% (SD: 11.25%) of long-ISI pattern estimator sequences, and 9.95% 

(SD: 12.39%) of short-ISI pattern estimator sequences. Then, temporarily removed 

malfunctioning electrodes were interpolated using spherical splines. As a final step, in all three 

individual datasets the epoched sequences were split into individual dot-based epochs by 

creating smaller epochs (i.e., −100 to 300 ms) relative to the onset of each individual dot, 

irrespective of whether that dot was present or absent.  

 To eliminate the influence of eye movements on EEG decoding, after preprocessing we 

also rejected dot-based epochs on the basis of deviations from fixation as detected by the eye-

tracker. To this end, gaze position (i.e., x and y coordinates) were epoched relative to the onset 

of the sequence using the same windows used during EEG preprocessing. Missing data due to 

blinks detected by the eye-tracker were interpolated by padding 100 ms before and after the 

blink interval (according to table 2 in Hershman et al., 2018). To control for drifts in the eye-

tracker data, eye epochs without a saccade in the 100-ms pre-trial window were shifted toward 

fixation. The epoched data was then down-sampled to 512 Hz and aligned to the corresponding 

EEG epochs by creating dot-based epochs. Each of these individual dot-based epochs were 

summarized by a single value indicating the maximum fixation deviation measured in 

continuous 40-ms intervals of data (van Moorselaar & Slagter, 2019). If this value was above 

1 dva, this epoch was marked for exclusion. In case of missing eye-tracker data, we used a 

sliding-window step method (length: 200 ms, step: 10 ms, threshold: 20 μV) on HEOG to 

detect eye movements. Combining these two methods, we excluded an average of 5.51% (SD: 

5.1%) of sequence epochs, 4.59% (SD: 4.47%) of long-ISI pattern estimator epochs, 3.46% 

(SD: 4.33%) of short-ISI pattern estimator epochs. 

 

Decoding analyses 

To investigate the position representation of both present and absent dots on the screen, we 

applied multivariate pattern analysis, using linear discriminant analysis (LDA) in combination 

with a 10-fold cross-validation scheme, with channel voltages from the 29 posterior electrodes 

(i.e., CPz, CP1, CP2, CP3, CP4, CP5, CP6, TP7, TP8, Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9, 

P10, POz, PO3, PO4, PO7, PO8, Oz, O1, O2, Iz) used as features (e.g., Chota et al., 2023; 

Hajonides et al., 2021; Robinson et al., 2020; Wolff et al., 2017) and the four dot positions of 

the full sequences as classes. Before classification EEG data was averaged across three epochs 

(i.e., matching dot positions), while ensuring that the number of observations per stimulus 
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position that entered the analysis was balanced across classes so that training was not biased 

towards a specific class. Event averaged data was then baseline corrected using a −100 to 0 ms 

window and down-sampled to 128 Hz (to decrease the computational time of decoding 

analyses). To further increase signal-to-noise ratio (Grootswagers et al., 2017), the data were 

transformed per sample using principal component analysis (PCA) with 99% of the variance. 

Before applying PCA, the data was standardized. Note that while performing standardization 

and PCA on both the training and test data, the transformation statistics were estimated using 

the training data only. Next, within-block decoding was performed via a 10-fold cross 

validation procedure, such that at each time point, the classifier was trained on nine folds and 

tested on the remaining fold until each fold was tested once. Classifier performance was then 

averaged over folds and characterized via Area Under the Curve (AUC), where a value of 0.5 

is considered chance classification. 

 These initial decoding analyses, which were performed separately for short- and long-ISI 

pattern estimators, served to establish whether the pattern estimator could reliably track the dot 

position on screen. To subsequently assess whether absent dots were represented, if at all, 

differently than present dots, in a next set of analysis, the classifiers, with the same parameters 

used during within-block pattern estimator decoding, were trained on all events from the 

pattern estimator sequences and tested on both present and absent dots in full and partial 

sequences. Considering that there was no dot on screen in the absent condition, in these 

analyses we adopted a temporal generalization approach, training and testing was performed 

at all combinations of time points, to assess whether and when the EEG signal contained 

information regarding anticipated, yet absent events (King & Dehaene, 2014). In doing so, we 

again ensured that the number of observations in both the training and test set were balanced 

per stimulus position to avoid inflated above-chance performance resulting from a bias in the 

distribution of classes (Fahrenfort et al., 2018; van Moorselaar et al., 2020). 

 

Event-related potentials (ERPs) 

To isolate stimulus-evoked ERPs components, separate contralateral waveforms were 

computed for full and partial sequence conditions, using a set of 8 posterior electrodes (i.e., P1, 

P3, P5, P7, P9, PO3, PO7, O1 or P2, P4, P6, P8, P10, PO4, PO8, O2) (e.g., Hajonides et al., 

2021; Luck et al., 1990; Luck & Hillyard, 1994). In doing so, the first dot position (i.e., A) was 

excluded as at that point in the sequence there is no difference yet between full and partial 
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sequences. Epochs were baseline corrected using a 100 ms window preceding dot onset. 

Resulting waveforms were averaged across dot positions (i.e., BCD).  

 

Statistics 

Decoding scores were evaluated across time via cluster-based permutation tests with one 

sampled two-sided t-tests with cluster correction (p = .05, 1024 iterations; chance level = 0.5) 

using MNE functionality (Gramfort et al., 2013). The same procedure, but with a paired 

sampled t-test, was used to compare the difference between short- and long-ISI pattern 

estimators across time with the time window of the long-ISI pattern estimator matched to the 

short-ISI pattern estimator window. 
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Supplementary materials 
 

 
Figure 2—figure supplement 1. Pattern estimator position (all eight possible positions) decoding results. 

The decoder was trained and tested at the same time point with posterior electrodes (a), or gaze positions 

(b) as features. Horizontal dashed lines indicate chance level while vertical dashed lines indicate dot 

onset. Green and red solid lines represent long- and short-ISI pattern estimators, respectively. Shaded 

region represents standard error of the mean (SEM). Corresponding color bars below the x-axis indicate 

clusters that significantly differed from chance while the black bar indicates clusters with a significant 

difference between long- and short-ISI pattern estimators (p < .05). (c) Temporal generalization matrix, 
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with posterior electrodes as features, showing classification performance as a function of training and 

test time point in long- and short-ISI blocks. Solid black lines indicate clusters that significantly 

different from chance (p < 0.05).  
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