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Abstract 

Attentional capture by an irrelevant salient distractor is attenuated when the distractor is 

presented more frequently in one location compared to other locations, suggesting that people 

learn to suppress an irrelevant salient location. However, to date it is unclear whether this 

suppression is proactive, applied before attention has been directed to the distractor location, or 

reactive, occurring after attention has been directed to that specific location. The aim of the 

present study is to investigate how suppression is accomplished by using the pinging technique 

which allows one to probe how attention is distributed across the visual field prior to the 

presentation of the search display. In an EEG experiment, participants performed a visual search 

task wherein they were tasked with identifying a shape singleton in the presence of an irrelevant 

color singleton. Compared to all other locations, this color singleton appeared more frequently at 

a specific location, which was termed the high-probability location. Prior to the search task, we 

introduced a continuous recall spatial memory task to reveal the hidden attentional priority map. 

Participants had to memorize the location of a memory cue continuously and report this location 

after the visual search task. Critically, after the presentation of the memory cue but before the 

onset of the search display, a neutral placeholder display was presented to probe how hidden 

priority map is reconfigured by the learned distractor suppression. Behaviorally, there was clear 

evidence that the high-probability location was suppressed, as search was more efficient when 

the distractor appeared at this location. To examine the priority map prior to search, we adopted 

an inverted encoding approach to reconstruct the tuning profile of the memorized position in the 

spatial memory task. Inverted modeling resulted in reliable tuning profiles during memory 

maintenance that gradually decayed and that were revived again by the onset of a neutral 

placeholder display preceding search.  After the onset of the placeholders, the tuning profile 

observed was characterized by a spatial gradient centered over the high-probability location, with 

tuning being most pronounced at the-to-be suppressed location. This finding suggests that while 

learned suppression is initiated prior to search display onset, it is preceded by an initial phase of 

spatial selection, which is in line with a reactive suppression account. Together these results 

further our understanding of the mechanism of spatial distractor suppression.    

    

Keywords: distractor suppression, priority map, statistical learning, visual selection 
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Pinging the Hidden Attentional Priority Map: Suppression Needs Attention  
Even though large amounts of information constantly bombard our senses, we can effortlessly 

direct attention to relevant information and ignore information that may distract us. Recent 

studies have demonstrated that attentional selection can be so efficient because visual input is 

highly repetitive and structured, which makes it possible to predict what information will appear 

next based on the current sensory input (Friston, 2009; Kok et al., 2017). Extracting these 

regularities from the environment, often called statistical learning (Chun & Jiang, 1999; Frost et 

al., 2015), occurs effortlessly across trials, operates largely outside the realm of conscious 

awareness, and is not contingent on explicit knowledge of the regularity (Gao & Theeuwes, 2022; 

Goujon et al., 2015; Turk-Browne et al., 2005; but see Vicente-Conesa et al., 2023). In addition 

to top-down and bottom-up control processes (Corbetta & Shulman, 2002; Desimone & Duncan, 

1995; Theeuwes, 2010), statistical learning plays a crucial role in attentional selection (Awh et 

al., 2012; Failing & Theeuwes, 2018; Theeuwes et al., 2022). According to the tripartite model 

of attention (Awh et al., 2012; Theeuwes, 2019; Theeuwes et al., 2022) the interaction between 

top-down, bottom-up, and selection history, a category which encompasses statistical learning as 

well as other history-based effects, jointly determine the weights in a spatial priority map, which 

determines, in a winner take all fashion, which object is selected (Chelazzi et al., 2019; Zelinsky 

& Bisley, 2015). 

Previous studies have demonstrated that observers can learn which location is most likely 

to contain the target. Geng and Behrmann (2005) showed that targets presented in high-

probability locations are detected faster than those in low-probability locations (see also Ferrante 

et al., 2018; Jiang et al., 2013). In a related vein, Huang et al. (2022)used the additional singleton 

visual search task in which the target was presented more often in one location than in all other 

locations. This task was interleaved with probe trials, enabling an exploration of the distribution 

of attention across the display in the period preceding search display onset. Crucially, the probe 

task showed spatial enhancement for the location with the highest likelihood of containing the 

target. Based on these findings, it was argued that the amplification of weights within the spatial 

priority map, driven by statistical learning, takes place preemptively before the actual display 

presentation, implying that priority was changed proactively, prior to the allocation of attention. 

Consistent with this, an innovative EEG study by Duncan et al. (2023) employed a "ping" 

technique, commonly used in the realm of working memory (Wolff et al., 2015, 2017), to unveil 
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the weights of the concealed attentional priority. This technique pushes a wave of activity, often 

via presentation of a high-contrast stimulus, through the visual system to reveal hidden neural 

representations within networks of altered synaptic weights. Duncan et al. (2023) demonstrated 

that, following the acquisition of a learned priority for a specific spatial location, there was 

reliable decoding of the high-probability target location in the evoked EEG signal when a visual 

ping occurred during the interval preceding the presentation of the search display. The above 

change decoding is assumed to reveal the prioritized (enhanced) location within the “activity-

silent” priority map.  

These previous studies indicate that people easily pick up and learn the statistical 

regularities associated with the location of the target. Recently however, a large number of 

studies demonstrated that not only target but also distractor-based regularities affect the attention 

deployment (e.g., Failing & Theeuwes, 2020; Ferrante et al., 2018; Goschy et al., 2014; Huang, 

Theeuwes, et al., 2021; van Moorselaar & Theeuwes, 2021, 2022; Wang & Theeuwes, 2018b, 

2018a, 2018c; feature-based: Failing et al., 2019; Vatterott & Vecera, 2012). Employing a 

modified version of the additional singleton paradigm, where the color singleton distractor 

appeared with a higher probability at a specific location relative to other locations, Wang and 

Theeuwes demonstrated that distractor interference was reduced when distractors appeared at 

this high probability distractor location than at other locations. Furthermore, participants 

exhibited slower responses when the target was presented at this high-probability distractor 

location (Wang & Theeuwes, 2018b, 2018a, 2018c; also see Ferrante et al., 2018; Goschy et al., 

2014), suggesting that the high probability location was suppressed. Similar to the method used 

for target learning, Huang and colleagues (2022, 2023) randomly interleaved probe trials to 

explore whether learned distractor suppression was implemented before search display onset. 

Across multiple studies it was found that responses were slowed when the probe appeared at the 

high probability distractor location (Huang et al., 2022; Huang, Vilotijević, et al., 2021; Kong et 

al., 2020), even when the probe display was presented prior to the expected onset of the search 

display (Huang, Donk and Theeuwes, 2023) leading to the conclusion that suppression operates 

prior to search display onset. However, others have argued that suppression can only be 

instantiated reactively, after attention has been directed to that location (Chang et al., 2023; 

Moher & Egeth, 2012). In this respect, it is noteworthy that in the capture probes studies (Huang 

et al., 2022, 2023) probes that revealed suppression were presented after presenting a neutral 
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placeholder display. Therefore, it is possible that while suppression may have been in place at 

the moment in time the additional singleton search display was presented, the earlier presented 

placeholder display may have triggered an initial shift of attention to the high probability 

distractor location which was immediately followed by rapid attentional disengagement and 

suppression (Theeuwes et al., 2000; Theeuwes & Chen, 2005). Taking this concern into account, 

in a variant of the capture-probe paradigm, where participants discriminated the orientation of a 

tilted bar presented at one of the search locations, (Chang et al., 2023) revealed initial 

enhancement at the high probability distractor location before suppression. This finding implies 

that counter to the proactive suppression account, attention may be a prerequisite for suppression 

to occur. 

 The current study was designed to establish how suppression is implemented within the 

attentional priority map. For this purpose, analogous to previously used pinging technique 

(Duncan et al., 2023), search display onset was preceded by a task-irrelevant neutral placeholder 

display that served as a visual ping (see Figure 1). The attentional profile elicited by this visual 

ping was reconstructed in a time-resolved manner with a spatial inverted encoding model 

(Brouwer & Heeger, 2009, 2011; Foster et al., 2016, 2017; Sprague et al., 2016), generating 

location-selective channel tuning functions (CTFs) over time. In order to model the spatial 

response profile associated with learned suppression, a prerequisite is that the high-probability 

distractor location periodically shifts across space such that the topographic distribution of 

different spatial channels (i.e., neural populations) can be considered. Periodically shifting the 

high-probability distractor location however inevitably introduces temporal confounds (Duncan 

et al., 2023), such as lingering and enduring effects from initial learning experiences on 

subsequent attentional biases (Wang & Theeuwes, 2020). In light of these challenges, we opted 

to not center the tuning profiles around the high-probability distractor location. Instead, the high 

probability location remained static throughout the experiment. We then measured its influence 

on the priority landscape via a spatially specific modulation of a top-down attention signal, 

which can be flexibly adjusted on a trial-by-trial basis (Posner et al., 1980; Theeuwes, 2019).  

To this end, we embedded the additional singleton task, which was always preceded by a 

placeholder display, within the maintenance period of a spatial working memory task (see Figure 

1), with the spatial memory serving as a proxy for top-down attention (Awh & Jonides, 2001). 

Participants performed a visual search task wherein they were tasked with identifying a shape 
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singleton in the presence of an irrelevant color singleton. Compared to all other locations, this

color singleton appeared more frequently at a specific location, which was termed the high-

probability location. Prior to the search task, we introduced a continuous recall spatial memory

task to reveal the hidden attentional priority map. Participants had to memorize the location of a

memory cue continuously and report this location after the visual search task. Critically, after the

presentation of the memory cue but before the onset of the search display, a neutral placeholder

display was presented to probe how the hidden priority map is reconfigured by the learned

distractor suppression. This design not only enabled us to investigate whether a ping could also

unveil learned attentional biases associated with suppression but, crucially, also facilitated the

examination of the tuning profile of this suppression in a time-resolved manner. This approach

allows for a dissociation between proactive and reactive mechanisms. Specifically, within a

proactive account memory specific tuning should be attenuated at the high probability location

immediately following placeholder onset (Huang et al., 2022; Huang, Theeuwes, et al., 2021;

Kong et al., 2020), whereas a reactive suppression account predicts that the to-be suppressed

location is initially attended resulting in temporarily enhanced tuning at that location (Chang et

al., 2023; Moher & Egeth, 2012). 

Figure 1 
Schematic trial and experiment design  

Note. The experiment commenced with a training phase, during which participants were tasked with retaining the
spatial cue's location in their memory for subsequent testing following a delay. After a 5 minutes break, the training
phase transitioned to the test phase, where a search task was embedded during memory maintenance. Upon search
display onset, participants were instructed to search for a unique shape singleton while ignoring the color singleton.
Unbeknownst to the participants, the color singleton was presented more frequently at a location referred to as the
high-probability location (HPL). 
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Results 

Behavior: Spatial distractor learning and precise spatial memory maintenance  

We conducted a pairwise t-test comparing memory recall deviations between training and test 

phases to examine how memory performance varied with or without a concurrent secondary 

search task. Our findings revealed a significantly larger recall deviation at the test phase 

compared to the training phase (6.27° ±  0.95 vs. 11.94° ± 3.55, t(23) = 5.67, p < .001, d = 2.52), 

indicating that the process of tracking the spatial memory cue was substantially disrupted by the 

concurrent secondary task in the test phase. Note, that despite being disrupted by the search task, 

overall memory recall performance in the test phase was nevertheless high, indicating that 

observers were able to maintain a relatively precise memory representation outside the current 

focus of attention. 

 Next, we examined whether participants learned to inhibit the high-probability location in 

the visual search task while simultaneously maintaining an online representation of a spatial 

location in WM. A paired t-test was performed on mean RTs and accuracy, comparing trials 

where the distractor appeared at the high-probability location with those in which it appeared at 

one of the low-probability locations1 (see Figure 2A and 2B). The planned paired t-test revealed 

that participants exhibited faster (t(23) = 10.14, p < .001, d = 0.43) and more accurate (t(23) = 

5.19, p < .001, d = 0.71) responses when the distractor appeared at the high-probability location 

compared to the low-probability locations, showing a clear effect of statistically learned 

distractor suppression and replicating previous findings (Ferrante et al., 2018; Wang & 

Theeuwes, 2018b). If the statistically learned suppression was spatial-based and feature-blind, 

one would also expect impaired target processing at the high-probability location. Consistent 

with this expectation, a planned paired t-test on RTs for target location (collapsed across 

distractor-absent and distractor-present trials) demonstrated a substantial delay in participants’ 

responses when the target was presented at the high-probability location (M = 1018 ms), as 

opposed to the low-probability locations (M = 958 ms, t(23) = 5.45, p < .001, d = 0.48). The 

                                                 
1
 When contrasting RTs between trials featuring distractors at the high-probability location and those at the low-

probability location, potential RT slowdown in the latter scenario could arise from the target occupying the high-

probability location, a condition known to yield impaired target processing. To disentangle the effects of distractor 

suppression and target impairment and mitigate confounding, we categorized trials as low-probability only when 

both the target and distractor were not presented at the high-probability location. 
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same paired t-test on the mean accuracy (MHPL vs. MLPL: 90.1% vs. 91.7%) did not reveal any 

difference (t(23) = 1.68, p = .106, d = 0.36, BF01 = 1.37). 

To further characterize whether the learned suppression scaled with the relative distance 

to the high-probability location, we assigned the low-probability trials into one of four distance 

groups depending on the relative distance between the distractor and the high-probability 

location. The mean RTs and mean accuracy were submitted to a repeated-measures ANOVA 

with a within-subject factor Distance (dist-1, dist-2, dist-3, dist-4). A significant main effect was 

found in the analysis of RTs (F(2.22, 51.06) =�3.87, p�=�.023, ηp
2 =�.14). As shown in 

Figure 2C, responses in the dist-1 condition were faster than those in the dist-2 condition (t(23) = 

3.96, p = .003, d = 0.36), and marginally faster than those in the dist-3 condition (t(23) = 2.83, p 

= .058, d = 0.28)  and dist-4 condition (t(23) = 2.75, p = .069, d = 0.33). All other comparisons 

did not reach significance (all ps = 1). Mean accuracy analyses mimicked these findings (see 

Figure 2D), showing a main effect of Distance (F(2.13, 49) =�4.20, p�=�.019, ηp
2 =�.15). 

Performance in the dist-1 condition was more accurate than in the dist-2 condition (t(23) = 4.24, 

p = .002, d = 0.86), and in the dist-3 condition (t(23) = 2.97, p = .041, d = 0.75),  and marginally 

more accurate than in the dist-4 condition (t(23) = 2.87, p = .052, d = 0.73). 

In summary, observers remained sensitive to the spatial distractor regularity when the 

visual search task was embedded within the maintenance period of a spatial memory task. 

Consistent with previous work, distractor learning was characterized by a spatial gradient 

centered at the high probability distractor location, where distractor interference was attenuated, 

and target processing was impaired. After having validated that processing at the high probability 

distractor location was suppressed, we set out next to establish whether this suppression could be 

revealed in anticipation of search display onset, and critically, whether it did attenuate or 

enhance memory-specific tuning at the high probability distractor location relative to the other 

display locations.  

 
Figure 2 
Behavioral findings in the search task 
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SUPPRESSION NEEDS ATTENTION 9

   
Note. The top panels show (A) the mean RTs and (B) the mean accuracy under conditions where the distractor was
absent, presented at either the high-probability location (hpl) or at the low-probability locations (lpl). The bottom
panels show (C) the mean RTs and (D) the mean accuracy in relation to the relative distance between the distractor
and the high-probability location. Specifically, dist0, dist1, dist2, dist3, and dist4 signify instances where the
distractor was at the hpl, one position, two positions, three positions, and four positions away from the hpl. Small
grey dots show data for individual participants. The presence of ‘***’ denotes statistical significance at the level of p
< .001. Error bars indicate condition-specific, within-subject 95% confidence intervals (Morey, 2008). 

 
Localizer data: alpha-band tuned pinging of spatial working memory representations 

Before investigating whether attentional tuning profiles elicited by the placeholder displays

would be modulated by distractor-based learning, we first characterized the spatial memory code

in the training phase (i.e., in the absence of selection history effects). Given the robust

association with spatial attention and working memory maintenance, these analyses focused on

oscillatory power within the alpha-band (8 - 12 Hz). Consistent with previous work (Foster et al.,
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2016, 2017; van Moorselaar et al., 2018), both evoked and total alpha power generated reliable 

CTFs in response to memory display onset (p < .05), with evoked power returning to baseline 

relatively early in the delayed period (see Supplementary Figure S1A), whereas total alpha 

power enabled reliable CTF reconstruction throughout the entire delay period (Figure 3A). 

Notably, as depicted in Figure 3B, the evoked CTFs were distinctly revived upon the 

presentation of the placeholder display (p < .05).  

 Given that the primary objective of this study was to monitor location-specific 

modulations of the attention set as a function of the distance from the high probability location, 

we also ensured that the observed reconstructions were not driven by a subset of locations, but 

instead were homogeneous across all possible locations. As visualized in Figure 3C/D, the 

generated CTFs were not the result of imbalanced spatial selectivity of specific locations, as 

similar tuning was observed across all eight individual locations. Indeed, an artificially created 

distance-based gradient centered around the location that would become the high probability 

location in the subsequent test phase did not exhibit any unbalanced spatial selectivity (see 

colored coded lines in Figure 3A and 3B). These analyses confirm that the data from the training 

set did not exhibit a spatial bias from the outset and can thus serve as a neutral independent data 

set to investigate how distractor learning would, if at all, modulate attentional tuning across all 

display locations. 

 
Figure 3 
The performance of the Localizer in the training phase 
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Note. (A) The average total alpha-band channel tunning function (CTF) profiles time-locked to memory onset (B)
The average evoked alpha CTF profiles time-locked to placeholder onset. The lower image depicts the responses
across channels, while the plot above shows CTF slopes, with amplitude signifying spatial selectivity. Shaded areas
reflect bootstrapped SEM. Time points exhibiting significant differences in CTF slopes, identified through a cluster-
based permutation test (p < .05), are marked with horizontal black insets. The light color lines in the background
indicate the CTF slopes tuned to different memory cue locations, grouped by their distance to the artificial high-
probability location. (C) Individual total CTF profiles, synchronized with memory cue onset, finely tuned to each of
the eight spatial cue locations, respectively. (D) Individual evoked CTF profiles, synchronized with placeholder
onset, finely tuned to each of the eight spatial cue locations, respectively. 
 
Cross-session encoding: No evidence for proactive suppression of top-down attentional 

selection biases 

After having established that weights obtained from the training set reliably captured working

memory maintenance across all eight locations without a spatial bias, we next examined how this
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model generalized to the test set. In doing so, we ensured that data points in the training and test

set were aligned such that training and testing were done on matching time samples. As depicted

in Figure 4, and in line with van Moorselaar et al. (2018) the averaged tuning profiles resulting

from this cross-session encoding procedure mimicked the pattern of the localizer, with the main

difference that total power no longer tracked the memorized position throughout the entire delay

interval, but instead already returned to baseline prior to placeholder onset (Figure 4A).

Critically, however, this information was revived again by the placeholder, an effect that was

selective to evoked power (Figure 4B). Together these findings are consistent with a model

wherein the prospect of a secondary task during the memory maintenance interval shifted the

memory from an activity-driven into an activity-silent representation, which was then revived

again by placeholder onset (analogous to the pinging procedure). Despite a numerical trend, this

pattern did not manifest in the total alpha power CTF (see Figure 4B), indicating that the revived

spatial selectivity may be attributed to the phase-locked information carried by the placeholder

display.  

 
Figure 4 
Cross-session encoding: Alpha CTFs of Memory cue display and placeholder display 

Note. The location CTFs obtained by generalizing the trained model to the test set. CTFs were reconstructed from
evoked and total alpha power following the onset of (A) the memory cue display and (B) the placeholder display.
The lower image depicts the responses across channels, while the plot above shows CTF slopes, with amplitude
signifying spatial selectivity. Shaded areas reflect bootstrapped SEM. Time points exhibiting significant differences
in CTF slopes, identified through a cluster-based permutation test (p < .05), are marked with horizontal black insets. 

2

est 

ed 

ng 

in 

ay 

). 

as 

el 

he 

ed 

his 

ed 

er 

 
m 

ay. 
de 
es 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2024. ; https://doi.org/10.1101/2024.04.17.589855doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.17.589855
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPRESSION NEEDS ATTENTION 13

 
 To further investigate how this revival of the memory representation was modulated by 

the distractor regularity, we analyzed the spatial selectivity indexed by the reconstructed CTF 

profiles as a function of the memory cue location (HPL-matched, LPLs-matched). As visualized 

in Figure 5A, although reliable CTF reconstruction was observed in both conditions (p<0.05), 

the HPL-matched CTFs were numerically more pronounced than the LPLs-matched CTFs. 

Although statistically this conditional difference was not reliable, the observed pattern seems 

inconsistent with the notion that distractor learning leads to the proactive suppression of the high 

probability distractor location, which should arguably have resulted in an attenuation of the 

memory-specific revival at that location. To further explore this finding, we leveraged the 

observation that, as was also the case here, suppression often exhibits a spatial gradient. 

Specifically, we organized the evoked CTFs based on the distance from the memory location to 

the high-probability distractor location. As shown in Figure 5B, in line with a spatial gradient, 

the resulting CTF profiles varied depending on their distances to the high-probability distractor 

location. To evaluate the reliability of this observed gradient pattern in spatial selectivity, we 

employed a linear regression model to fit the tunning profiles. A cluster-based permutation test 

conducted on the slopes of the regression model identified a reliable gradient (p < .05) centered 

around the high probability location following placeholder onset. Critically, this gradient 

reflected an increase of spatial selectivity centered at the high probability distractor location 

rather than an attenuation, suggesting that immediately following placeholder onset the to-be-

suppressed location was at least transiently attended before being suppressed during visual 

search in the subsequent display.  

 
Figure 5 
The gradient pattern of Alpha CTFs following the onset of the placeholder display 
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Note. (A) Numerically larger CTFs were observed post-placeholder onset when the spatial memory cue matched the
high-probability location compared to the low-probability locations. (B) The location-specific CTFs were
categorized based on the relative position distance between the spatial memory cue and the high-probability
location. To statistically evaluate the observed gradient pattern, a linear regression model was applied to the data
points, followed by a permutation test on the slope of the regression model. Shaded areas depict bootstrapped SEM,
and time points with significant differences in regression model slopes are indicated with horizontal black insets.  
 
Discussion 

The aim of the current study was to examine whether learned distractor suppression is in place

before search display onset (i.e., proactive suppression) or instead whether suppression is

instantiated following attentional selection (i.e., reactive suppression). To this end, we introduced

a variant of the additional singleton task with a high probability distractor location in the

maintenance period of a spatial working memory task. At the behavioral level, responses were

faster when the distractor occurred at the high-probability location, but slower when the target

occurred at this location, indicative of generic spatial suppression, an effect that was

characterized by a discernible spatial gradient centered at the high-probability distractor location.

Yet, critically, at the neural level, there was no evidence that this spatial suppression attenuated

processing at the high probability distractor location in anticipation of a new search episode. The

neutral placeholder display, serving as a ping, presented prior to search display onset revived the
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reconstruction of the CTF profile of the current memory representation. Instead of a model that 

assumes that the high probability location was proactively suppressed, the revival of the CTF 

profile within the alpha-band showed the largest tuning at the learned suppressed location. 

Moreover, the modulation of the memory-tuned CTF profile was characterized by a spatial 

gradient that was centered over the high-probability location. This finding offers evidence that 

suppression comes into play only after the location is initially selected. Suppression occurs only 

following attentional enhancement, indicating a reactive suppression mechanism rather than 

proactive suppression.  

 Within the realm of learned distractor suppression, an ongoing debate centers around the 

question of whether, and precisely when, visual distractors can be proactively suppressed. As 

noted, the idea that learned spatial distractor suppression is applied proactively is largely based 

on the finding that the behavioral benefit observed when distractors appear with a higher 

probability at a given location is accompanied by a probe detection cost (measured via dot offset 

detection) at the high probability distractor location (Huang et al., 2022, 2023; Huang, 

Vilotijević, et al., 2021). As also pointed out by Chang et al. (2023) however, this assumption is 

largely grounded in findings that rely on behavioral measures, leaving open the possibility that 

the suppression of a distractor location only occurs after it was initially attended. To bypass the 

ambiguity in behavioral measures, other studies have turned to measures of the brain in the 

window prior to search display onset. Studies investigating the preparatory bias in response to 

distractor regularities largely examined topographical modulations of alpha-power, given its 

functional link to reduced cortical excitability. These studies however, mainly failed to find 

evidence in support of active preparatory inhibition (van Moorselaar et al., 2020, 2021; van 

Moorselaar & Slagter, 2019), with only one study observing increased preparatory alpha 

contralateral to the high probability distractor location (Wang et al., 2019). This absence of 

anticipatory tuning towards the to-be suppressed location has given rise to the idea that distractor 

learning operates by changing synaptic efficiency within these regions (van Moorselaar & 

Slagter, 2020). Consistent with this, a recent study using rapid invisible frequency tagging 

demonstrated reduced neural excitability at the high-probability distractor location in the absence 

of any alpha-band modulations (Ferrante et al., 2023). However, the correlational approach in 

that study, prevented a time-resolved analysis, leaving uncertainties about whether suppression 

was genuinely proactive or triggered by placeholder onset. Thus, while it is generally assumed 
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that learned suppression is proactive in nature, the evidence in support of that notion remains 

equivocal.  

 The observed modulation of the revival of the CTF profile casts further doubt on the 

assumption that learned distractor suppression is implemented proactively. While we 

hypothesized that top-down tuning (induced by holding a location in memory) would be least 

pronounced at the high-probability distractor location, we observed the opposite pattern. Rather 

than being suppressed the revived CTFs were characterized by a spatial gradient centered over 

the high-probability location, with tuning being most pronounced at the-to-be suppressed 

location. In contrast, in the training phase, tuning was homogeneous across all eight search 

locations. This finding clearly indicates that the putative priority map, initially tuned by 

maintaining a spatial location in WM, was reconfigured by statistical regularities across search 

displays to align with the imminent search. Thus, while learning-dependent suppression may 

have been initiated prior to the onset of the search display, this suppression appears to be 

preceded by an initial phase of spatial selection. Although this result is based on an exploratory 

analysis and should therefore be interpreted with caution, it is noteworthy that a recent 

behavioral study observed a similar pattern of results (Chang et al., 2023). In a modified version 

of the capture-probe paradigm, where the probe display onset was not preceded by a placeholder 

display, participants discriminated the orientation of a tilted bar presented at one of the search 

locations, revealing initial enhancement at the high probability distractor location before 

suppression. Although the exploratory nature of our findings should again be stressed, they may 

call for a reinterpretation of how learned suppression might take place. Instead of proactively 

suppressing specific locations, individuals may first direct attention to the location that they have 

implicitly learned to expect a distractor, enabling suppression of that location following rapid 

attentional disengagement.  

 A novel aspect of the current study is that visual pings, here in the shape of a neutral 

placeholder display, can effectively unveil spatial memories hidden from the ongoing EEG 

signal. Recently, we demonstrated that the otherwise, invisible attentional priority map induced 

by a spatial imbalance of target probability across trials could also be revealed by the ‘pinging’ 

technique in conjunction with multivariate pattern analysis and EEG (Duncan et al., 2023). 

However, while it is well established that early ERP components are enhanced in response to 

visual stimulation at memorized locations (Awh et al., 2000), to date the pinging technique has 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2024. ; https://doi.org/10.1101/2024.04.17.589855doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.17.589855
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPRESSION NEEDS ATTENTION 17

exclusively been used to reveal feature-specific information within working memory (Wolff et 

al., 2015, 2017). Despite initial enthusiasm within this field, there is an ongoing debate 

surrounding the precise mechanisms underlying the ping effect, particularly whether it 

reactivates latent networks or merely amplifies existing, yet below-threshold representations 

within ongoing neural activity (Barbosa et al., 2021). Additionally, skepticism arises from 

demonstrations that measurable neural activity often underlies working memory maintenance 

(Schneegans & Bays, 2017). These two, not necessarily exclusive scenarios, were also evident in 

the present study. During the training phase, where the memory task was the only task at hand, 

CTFs continuously tracked the position of the spatial memory cue. However, the same 

reconstruction returned to baseline when the model was applied to the test session that 

incorporated a search task during the maintenance interval. This dissociation aligns intriguingly 

with a study by van Moorselaar et al. (2018), where continuous reconstruction of spatial memory 

was disrupted during a secondary task introduced in the maintenance interval. This suggests the 

possibility that under dual-task conditions memories might be strategically offloaded to a 

mechanism relying on weak neural activity or even one not dependent on sustained neural firing 

at all, such as an activity-silent representation facilitated by synaptic plasticity or long-term 

memory. Regardless of the precise underlying mechanism, our results demonstrate in a 

compelling way that the content of a hidden spatial representation can be revived by flooding the 

visual system with sensory input. This demonstrates that the pinging technique can not only be 

used to investigate feature-based working memory but also the dynamics of spatial memories.  

 In summary, the present study is the first to show that a spatial memory representation 

can be reconstructed based on a ping, a neutral placeholder display, and used to infer how 

distractor suppression affects the priority map prior to search. Prior to search and in response to 

the ping, the tuning profile of the memorized location was most pronounced at the high 

probability-distractor location and exhibited a spatial gradient centered over that location. These 

results are not in line with a proactive suppression account but support the idea that learned 

suppression follows an initial phase of spatial selection. 

 

Methods 

Participants 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2024. ; https://doi.org/10.1101/2024.04.17.589855doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.17.589855
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPRESSION NEEDS ATTENTION 18

In line with previous EEG experiments (Duncan et al., 2023; Noonan et al., 2016; van 

Moorselaar et al., 2020, 2021, 2023), we used a predetermined sample size of 24 participants. 

Participants (N=24, 22 females, 2 males, Mage = 20.8, SDage = 2.9) were recruited from the 

research pool of the Vrije Universiteit Amsterdam. Participants received either course credits or 

a monetary reward (€35) for 3.5 hours of participation. To ensure data quality and maintain the 

predefined sample size, three participants were replaced. One participant was substituted due to a 

high number of trial removals during preprocessing (>30%). Another participant, whose 

accuracy fell below 2.5 standard deviations from the overall mean for the search task, was also 

replaced. The third participant was substituted because of poor memory recall, deviating more 

than 2.5 standard deviations from the overall mean. Written informed consent was obtained from 

all participants before the experiment. The study was approved by the Ethical Review Committee 

of the Faculty of Behavioral and Movement Sciences of Vrije Universiteit Amsterdam and was 

conducted following the guidelines of the Helsinki Declaration. 

 

Apparatus, Task and Stimuli 

The experiment was created on a Dell Precision 3640 Windows 10 computer equipped with an 

NVIDIA Quadro P620 graphics card in OpenSesame (Mathôt et al., 2012) using PsychoPy 

functionality(Peirce, 2007). Stimuli were presented on a 23.8-in. ASUS XG248Q monitor with a 

240-Hz refresh rate. Participants were seated in a dimly lit room, positioned at a distance of 70 

cm from the monitor, with the aid of a chinrest to ensure stable head position. Throughout the 

experiment, participants’ right eye movements were tracked by Eyelink 1000 (SR Research) eye 

tracker at a sample rate of 1000 Hz. Participants were given specific instructions to maintain 

their fixation on the central point during the experiment. Auditory feedback was provided 

whenever the gaze position deviated by more than 1.5° from the central point. All visual stimuli 

were presented against a light grey background with RGB values of 224/224/224. Henceforth, 

the colors of the stimuli were consistently delineated in RGB values. 

 The spatial working memory task was adapted from Foster et al. (2016) and required 

participants to memorize the angular location of a circle stimulus (0.9° in radius, 196/196/196) 

positioned 4.2° away from the central fixation marker (0.35° in radius). This fixation marker was 

designed as a combination of a bull's eye and crosshair, a feature known to improve stable 

fixation (Thaler et al., 2013). The angular location was sampled with equal probability from one 
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of eight locations bins spanning 0°-315°, with jitter added (-22.5° -22.5°) to cover all possible 

locations to avoid categorical coding. At test, participants were required to report the memorized 

location via a mouse by clicking on a ring (4.2° in radius). 

 The intermediate visual search task was modeled after the additional singleton paradigm 

(Theeuwes, 1992). Participants were instructed to search for a unique shape (i.e. target) within a 

further homogeneous display and report the orientation of the line within the target shape. The 

search array consisted of eight evenly spaced items in a circular configuration (4.2° in radius) 

around central fixation. Each item within the search array contained either a vertical or 

horizontal white bar (0.1° x 1°, 255/255/255). The target could either be a diamond (2.3° x 2.3°) 

among seven circles (2° in diameter) or vice versa. In 74% of the trials, a distractor was present: 

one of the non-target items was a color singleton (either red (255/0/0) or green (0/131/0)). In 

these trials, the distractor was more likely (64%) to be placed at one location (64%), called the 

high-probability location (HPL), than at the other locations (5% at each of these seven 

locations), to induce statistically learned suppression of the HPL. The HPL remained constant 

throughout the experiment and was counterbalanced across participants. The target color, shape, 

and line orientation within the target were randomized on each trial, and the target location was 

equally likely across all locations. 

The placeholder display, which served as visual pings, consisted of eight grey shapes 

(128/128/128), each created by superimposing a diamond shape onto a circle shape. Importantly, 

the spatial locations that were occupied by the placeholder and the search array were spatially 

matched with the eight position bins in the spatial working memory task.  

 
 
Design and procedure 

The current study followed a structured protocol comprising two phases, a training phase, which 

served as an independent localizer to train the encoding model (details below), and a subsequent 

test phase combining the spatial working memory task with the visual search task. During the 

training phase, each trial began with a blank display for a randomly jittered duration of 200 – 400 

ms, followed by a fixation dot for 250 ms. Participants were explicitly instructed to maintain 

their gaze on the fixation dot as long as it was visible. Subsequently, a memory cue was 

presented on the screen, and participants were instructed to remember its location until the end of 

the trial. The memory cue disappeared after 200 ms, leaving only the fixation dot visible for a 
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duration that ranged randomly between 900 to 1100 ms. Next, a placeholder display appeared for 

a randomly varying duration between 500 and 750 ms. Finally, a memory test display was 

presented until a response was made by participants. 

In the test phase, the trial structure closely resembled that of the training phase, with two 

important distinctions: First, following the placeholder display, a search display was presented 

for a maximum duration of 2000 ms or until a response was made. Second, on a small subset of 

trials (13%), the spatial memory cue display was replaced by a display containing a yellow 

fixation, signaling participants that they only needed to perform the visual search task2.  

The training phase consisted of 10 blocks, each containing 80 trials, while the test phase 

comprised 10 blocks of 92 trials. Between blocks, participants were given the opportunity of a 

short break, during which feedback on the mean memory recall deviation and search 

performance (in the test phase) for both the latest block and all finished blocks was provided. 

After the completion of the training phase, participants were given a 5-minute break before 

proceeding to the test phase. Before entering the training phase, participants performed 16 

practice trials randomly drawn from a training block. Likewise, preceding the test phase, 

participants underwent 48 practice trials randomly drawn from a testing block. This process 

continued until participants demonstrated a thorough understanding of the assigned tasks. It is 

important to emphasize that during the test phase, the location of the memory cue was not 

contingent on the location of the singleton in the search task (i.e., these two tasks were 

independent of each other).  

 

Behavioral analysis 

All data were preprocessed using Python, and statistical analysis was done using R (R Core 

Team, 2020). Conditional mean reaction times (RTs) and accuracy of the visual search task were 

analyzed with repeated measures ANOVA, followed by planned comparisons with paired t-tests. 

For RT analyses, we excluded incorrect responses and RTs < 200 ms. For each participant, we 

also excluded RTs that exceeded the ±2.5 standard deviation from the overall mean RT 

(collapsed across conditions). The exclusion of incorrect responses and data trimming resulted in 

an average loss of 10.5% of trials. Participants whose accuracy or memory deviation fell above 

                                                 
2
 The goal of these no-memory trials was to track learned attentional priority in the absence of a top-down 

attentional set. The resulting model, however, failed to capture any reliable spatial tuning relative to the high-

probability location, leading us to omit reporting this particular outcome. 
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or below 2.5 SD from the overall mean were replaced during the data collection phase (see 

Participants). P-values were Greenhouse-Geiser corrected in case where the assumption of 

sphericity was violated, and were corrected with the Holm-Bonferroni method for multiple-level 

comparisons. In cases of non-significant findings, we also provided the Bayes factor (BF01) to 

support the null model.   

 

EEG recording and preprocessing  

EEG data were collected using a 64-electrode cap with electrodes placed according to the 10-10 

system (Biosemi ActiveTwo system; www.biosemi.com). To monitor eye movements, in case of 

missing eye tracker data, vertical and horizontal electrooculogram (VEOG/HEOG) signals were 

recorded via external electrodes placed ~2 cm above and below the right eye, and ~1 cm lateral 

to the external canthi. Two additional electrodes were placed on the left and right earlobe for 

offline reference. Electrode impedances were kept below 20 kΩ. Signals were amplified (100 Hz 

low-pass filter, 0.16 Hz high-pass filter; ActiveTwo AD-box, ActiveView;) and sampled at 512 

Hz. 

EEG data were preprocessed using a customized Python script and the MNE package 

(Gramfort et al., 2013). During preprocessing, the data were re-referenced to the average of the 

left and the right earlobe and high-pass filtered using a zero-phase ‘firwin’ filter at 0.01 Hz to 

remove slow drifts. Malfunctioning electrodes detected during recording were temporarily 

removed in offline analysis such that subsequent preprocessing steps were not influenced by 

these electrodes.  The continuous data were then epoched from 750 ms to 1600 ms relative to the 

memory cue onset and from 750 ms to 1000 ms relative to the placeholder display onset, with the 

windows of interest being -250 ms to 1100 ms and -250 ms to 500 ms respectively (centered 

around memory cue and placeholder display onset). Eye-blink components were removed after 

performing an independent components analysis as implemented in MNE (method = “picard”) 

on 1 Hz filtered epochs. We used an automatic trial-rejection procedure on the EEG signal to 

remove noise-contaminated epochs. Specifically, the EEG signal was further processed by 

applying a 110 to 140 Hz band-pass filter to capture muscle activity and transform it into z 

scores. A subject-specific z-score threshold was determined based on the within-subject variance 

of z-scores within the windows of interest (de Vries et al., 2017; Duncan et al., 2023). To 

minimize false alarms, instead of immediately removing epochs that exceeded the z-score 
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threshold, an iterative procedure was employed. For each marked epoch, the five electrodes 

contributing most to the accumulated z score within the time period containing the marked 

artifact were identified. These electrodes were then interpolated one by one using spherical 

splines (Perrin et al., 1989). After each interpolation, the epoch was checked to see if it still 

exceeded the z-score threshold. Epochs that still exceeded the threshold after the iterative 

interpolation were dropped which led to an average loss of 9.1% of all trials (range 0.1% - 

15.3%) for epochs time-locked to memory cue onset and an average loss of 6.1% of all trials 

(range 0% - 12.3%) for epochs time-locked to placeholder onset. Lastly, malfunctioning 

electrodes were interpolated using spherical splines (Perrin et al., 1989). 

Samples of the eye positions were aligned with the EEG data during offline analysis and 

converted to visual degrees that deviated from the central fixation point. To prevent potential 

confounds in interpreting the results, epochs were excluded if the gaze position exceeded 1.2° of 

the central fixation point anytime during the time range of -100 to 500 ms relative to the memory 

cue onset or during the time range of -200 to 300 ms relative to the placeholder onset. In case of 

missing Eyelink data, epochs were removed when detecting a sudden increase in HEOG 

amplitude via an algorithm with a window size of 200 ms, a step of 10 ms, and a threshold of 15 

µV. In total, 6.8% of the cleaned data for memory epochs (range 0.4% - 18.7%) and 3.2% of the 

cleaned data for placeholder epochs (range 0% - 8.2%) were excluded due to the detection of eye 

movements. 

 

Time-frequency analysis 

After performing data cleaning procedures, the artifact-free EEG signals were filtered with a 

fifth-order Butterworth bandpass filter (8-13 Hz) implemented within MNE. The subsequent step 

involved computing the alpha-band power via a Hilbert transform. To distinguish between 

evoked and total power, distinct methodologies were applied. Evoked power was derived by 

averaging the complex analytic signals obtained from the Hilbert transform across trials, 

followed by squaring the resulting complex magnitude. Conversely, total power was computed 

by squaring the complex magnitude for each trial individually and then averaging these values. 

This distinction in procedures results in evoked power capturing phase-locked information 

aligned with stimulus onset, whereas total power reflects non-phase-locked information.  
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Following time-frequency decomposition, the resulting time courses were smoothed with 

a sliding window approach (window size = 8, step =1). Subsequently, a principal component 

analysis (n_components = 16) was performed on the smoothed data of all electrodes to enhance 

the signal-to-noise ratio.  

 

Inverted Encoding Model  

We used an inverted encoding model (IEM) to reconstruct location-selective channel tuning 

functions (CTFs) from alpha-band power (Foster et al., 2016). The CTFs were calculated using 

the alpha-band topographical power for its functional role of tracking spatial attention (Foster et 

al., 2016, 2017; Rihs et al., 2007; Samaha et al., 2016; van Moorselaar et al., 2018).  

The topographical power measured at each electrode was assumed to reflect the weighted 

sum over 8 spatial channels (i.e., neuronal populations), each tuned to a different angular 

location (Foster et al., 2016). The response profile of each spatial channel across angular 

locations was modeled as the below function: 

� �  sin�0.5��� 

, where � represents angular locations ranging from 0° to 359° and R is the response of the 

spatial channel. This response profile was shifted circularly for each channel such that the peak 

response of each spatial channel revolved around one of the polar angles (0°, 45°, 90°, etc.).  

An IEM routine was applied to each data point in the alpha-band power in two stages. In 

the first stage, the response profile of the spatial channel and the data acquired during the 

experimental training phase were used to calculate a weight matrix by fitting them into a general 

linear model represented by the formula below: 

� � ��� 

, where B1 (m electrodes × n trials) is the observed power (evoked or total) at each electrode for 

each trial in the training set, C1 (k channels × n trials) is a matrix of predicted responses for each 

spatial channel on each trial, and W is a weight matrix that characterizes the mapping from 

“channel space” to “electrode” space. The weight matrix W is solved using the least square 

solution with the Python function np.linalg.lstsq(C1, B1). In the second stage, We derived a set of 

estimated channel responses from inverting the model with the input of the obtained weight 

matrix W and the independent observed data B2 (m electrodes × n2 trials) using the Python 
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function np.linalg.lstsq(W.T, B2.T). The estimated channel responses (8 channels × 8 location 

bins) were shifted to a common center (0°).  

The IEM procedures underwent 100 iterations to mitigate the impact of noisy or 

erroneous data points, independently for both the localizer and cross-phase encoding. In each 

iteration for the localizer, the training phase data was randomly partitioned into three sets, 

ensuring an equitable distribution of observations across location bins (i.e., memory locations). 

Two sets were designated as the observed data B1 to derive the weight matrix, while the 

remaining set served as the observed data B2. For cross-phase encoding, the training phase data 

was randomly split into two sets, each serving as observed data B1 to compute the weight matrix. 

The test phase data was utilized as observed data B2. The random equating of observations across 

location bins occurred independently for both the training and test sets. The resulting estimated 

channel responses were averaged across all iterations to derive the final CTFs. This procedure 

ensured the independence of training and test data throughout the analysis. 

 

Statistical Analysis 

To quantify the spatial selectivity of the CTFs, we employed a linear polynomial fitting approach 

to estimate the slopes of the CTFs. Positive slopes would signify spatial selectivity, while 

negative slopes would indicate deviation from spatial selection (i.e., suppression). These slope 

values were then subjected to statistical analysis to assess the validity of the reconstructed CTFs 

and conditional differences, using a cluster-based one-sample pair t-test combined with Monte 

Carlo randomization. This non-parametric statistical testing considers the data’s temporal 

correlation structure and controls for multiple comparison problems (Maris & Oostenveld, 2007). 

A new dataset was randomly resampled from the observed data in each iteration. The sign of the 

resample data was randomly flipped, and clusters were identified if the t-values of the adjacent 

data points exceeded the threshold. The cluster with the largest sum of t-values was retained. 

This process was repeated 1024 times, yielding a permutation distribution from the retained 

clusters. The clusters obtained from the veridical data were then compared with the form 

distribution. The slope or the conditional difference was deemed statistically reliable if the 

cluster exceeded the 95th percentile of the distribution.  
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