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Abstract
Recent studies have shown that observers can learn to suppress a location that is most likely to contain a distractor. The 
current study investigates whether the statistically learned suppression is already in place, before, or implemented exactly 
at the moment participants expect the display to appear. Participants performed a visual search task in which a distractor 
was presented more frequently at the high-probability location (HPL) in a search display. Occasionally, the search display 
was replaced by a probe display in which participants needed to detect a probe offset. The temporal relationship between 
the probe display and the search display was manipulated by varying the stimulus onset asynchronies (SOAs) in the probe 
task. In this way, the attentional distribution in space was probed before, exactly at, or after the moment when the search 
display was expected to be presented. The results showed a statistically learned suppression at the HPL, as evidenced by 
faster and more accurate search when a distractor was presented at this location. Crucially, irrespective of the SOA, probe 
detection was always slower at the HPL than at the low-probability locations, indicating that the spatial suppression induced 
by statistical learning is proactively implemented not just at the moment the display is expected, but prior to display onset. 
We conclude that statistical learning affects the weights within the priority map relatively early in time, well before the 
availability of the search display.
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Introduction

Humans are sensitive to spatial regularities in their environ-
ment. The experience with these regularities strongly biases 
the way in which people perform a visual search task. For 
instance, the repeated presence of road signs on the right 
side of the road biases observers to prioritize the selection 

of road signs located on the right over those located on the 
left side of the road. Past selection experience, i.e., selec-
tion history, has been suggested to be a major factor in the 
guidance of attention in visual search (Awh et al., 2012; 
Theeuwes, 2018, 2019).

Much research has been done to understand how attention 
is biased by spatial regularities in the location and context 
of a target (Geng & Behrmann, 2002, 2005; Jiang et al., 
2013; Li et al., 2022; Li & Theeuwes, 2020). Recently, an 
increasing number of studies has focused on how spatial 
regularities in task-irrelevant but salient distractors affect 
visual search (Duncan & Theeuwes, 2020; Ferrante et al., 
2018; Gao & Theeuwes, 2020; Goschy et al., 2014; Sauter 
et al., 2018, 2019, 2021; van Moorselaar et al., 2020, 2021; 
Wang & Theeuwes, 2018a, 2018b; Won et al., 2019; Xu 
et al., 2021). Typically, spatial regularities are introduced by 
presenting a salient yet irrelevant distractor more frequently 
at one location than at other locations. The typical finding 
is that visual search for a target is faster and more accurate 
when the distractor is presented at such a high-probability 
location compared to any of the other locations (Ferrante 
et al., 2018; Wang & Theeuwes, 2018a). To account for this 
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finding, it has been proposed that through statistical learn-
ing, the frequent distractor location becomes suppressed 
relative to the other locations in the spatial priority map 
(Theeuwes, 2018, 2019; Theeuwes et al., 2022).

At present, it is unclear when distractor suppression 
induced by statistical learning is applied. One possibility 
is that suppression is applied in a reactive manner such that 
it occurs after attention has been captured by the irrelevant 
salient distractor. Statistical learning may then lead to faster 
suppression, allowing attention to be more rapidly disen-
gaged from the distractor at the high-probability location as 
compared to the other locations. However, several studies 
showed that observers’ performance was not only enhanced 
when a distractor was presented at a high-probability loca-
tion, but was also impaired when this location happened 
to contain the target (Ferrante et al., 2018; Huang, Theeu-
wes, & Donk, 2021a; Wang & Theeuwes, 2018a, 2018b, 
2018c; but see Goschy et al., 2014; Liesefeld & Müller, 
2021; Sauter et al., 2019). It seems unlikely that suppres-
sion is reactively applied since the target was suppressed 
when it was presented at a high-probability distractor loca-
tion. Alternatively, suppression can be applied proactively, 
meaning that as a result of statistical learning, the frequent 
distractor location is suppressed prior to its selection. Note 
that this type of (learned) suppression is different from the 
suppression that has been proposed by the signal suppression 
hypothesis (Gaspelin et al., 2015, 2017; Sawaki & Luck, 
2010, 2013). According to this account, suppression only 
operates on specific features, such as a specific color, and 
observers must have knowledge of the color they need to 
avoid. If suppression only operates on a specific feature such 
as the color red, then if the target is “not-red,” it should not 
be suppressed regardless of its location. If, however, sup-
pression is location-based only, then regardless of its fea-
tures, objects presented at these high-probability distractor 
locations should be suppression. Location-based suppression 
can explain why a target presented at a high-probability dis-
tractor location is suppressed even though it has features that 
are highly relevant to the task.

Indeed, several studies have been suggesting that the 
suppression of a frequent distractor location as induced by 
statistical learning occurs proactively (Huang et al., 2022; 
Huang, Theeuwes, & Donk, 2021a; Huang, Vilotijević, 
et al., 2021b; Wang, Samara, & Theeuwes, 2019a; Wang, 
van Driel, et al., 2019b). For example, in a study by Huang, 
Vilotijević, et al. (2021b), participants were asked to search 
for a unique shape that was presented simultaneously with an 
irrelevant colored distractor singleton and six neutral stim-
uli in a search display. The distractor was presented more 
frequently at one particular location to induce statistical 
learning. Occasionally, instead of a search display, a probe 
display was presented. Upon the presentation of the probe 
display, observers had to detect the offset of a probe dot, 

which occurred equally likely at each one of the eight possi-
ble locations. The probe display was used to provide a snap-
shot of the distribution of attention in space at the moment 
in time the search display was expected to be presented. The 
results showed that reaction times (RTs) to probe offsets 
presented at the high-probability distractor location were 
longer than those to probe offsets presented elsewhere. The 
observed difference in reaction times indicated that attention 
was directed away from the high-probability distractor loca-
tion, suggesting proactive suppression of the high-probabil-
ity distractor location in anticipation of the upcoming search 
display. Moreover, in a further study (Huang et al., 2022), it 
was shown that probe-offset detection performance was not 
only hampered at a high-probability distractor location but 
also simultaneously enhanced at a high-probability target 
location, suggesting that through statistical learning, both 
distractor suppression and target enhancement can occur 
simultaneously prior to attentional selection.

Although these findings showed that suppression was 
brought into force prior to display onset, the question 
remains whether distractor suppression is applied at the 
moment of onset of the search display or already prior to 
display onset. In Huang, Vilotijević, et al. (2021b) as well 
as in Huang et al. (2022), the probe display was always pre-
sented at the same moment in time as the search display 
was expected to occur. That is, both the probe display and 
the search display were presented 800 ms after the presenta-
tion of a placeholder display. The predictability of when the 
display would be presented may have allowed participants 
to only activate the suppression of the distractor location at 
the time when they expected the search display to appear. 
Accordingly, suppression may have been applied prior to 
attentional deployment but not prior to display onset. Indeed, 
in a recent study conducted by Grubert and Eimer (2020), 
it was shown that people were quite flexible in activating a 
specific attentional target template at the moment it became 
relevant (see also Xu et al., 2022). They showed that con-
tingent upon the expected feature of an upcoming target, 
different attentional templates could be selectively activated. 
More importantly, a specific attentional template was not 
continuously activated but was rather re-activated over and 
over again around the time the search display was expected 
to be presented (see also Grubert & Eimer, 2018). It is pos-
sible that statistically learned suppression functions in a 
similar manner so that it is only activated at the time that 
observers expect the onset of the search display.

The purpose of the current study was to examine whether 
distractor suppression is flexibly applied at the moment in 
time the onset is expected (see Grubert & Eimer, 2020) 
or whether it is applied during the time period before the 
display is presented. In the latter case, it is expected that 
the distractor location is already suppressed before the 
search display comes on. To distinguish between these two 
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possibilities, we used a similar design as in our previous 
studies (Huang et al., 2022; Huang, Vilotijević, et al., 2021b) 
in which participants performed a search task on the major-
ity of trials and a probe offset detection task in the remain-
ing trials. The probe offset detection task is a method for 
evaluating how attention is allocated in space in a given 
display. It is inspired by the letter-probe task (Gaspelin 
et al., 2015; Kim & Cave, 1999), which is another com-
monly used technique for assessing the distribution of atten-
tion in space. In the search task, participants searched for 
a unique shape singleton in the presence of an irrelevant 
salient color distractor. To induce statistical learning, the 
distractor was presented more often at one particular loca-
tion than at any of the other locations. In the probe offset 
detection task, the offset occurred equally likely at each of 
the locations. Crucially, the search display was presented 
consistently 800 ms after the presentation of a placeholder 
display, whereas the probe display could be presented at 
three different stimulus onset asynchronies (SOAs) relative 
to the placeholder display (400/800/1,200 ms, see Fig. 1). 
In this way, the probe display could appear prior to (in the 
400-ms SOA condition), simultaneously with (in the 800-ms 
SOA condition), or after (in the 1,200-ms SOA condition) 
the expected onset of the search display. If suppression is 
flexibly applied and brought into force exactly at the onset 
of the search display, probe detection performance should 

only be affected by the distractor regularity at the 800-ms 
SOA, as this SOA is identical to the one used in the search 
task. If the high-probability distractor location is proactively 
and continuously suppressed, probe detection performance 
should be affected by the regularity, irrespective of SOA.

Methods

Participants

To determine the sample size, we ran an a priori power 
analysis using the simr package (Green & MacLeod, 2016) 
in an R environment (R Core Team, 2020). We took 19 ms 
as the effect size of interest based on the effect size (β = 
18.87) reported in a study with a large sample size (N = 
180) and a similar experimental design (Huang et al., 2022). 
The power analysis was performed using the data (N = 180) 
and the linear mixed model structure reported in Experi-
ment 3 by Huang et al. (2022). The analysis indicated that a 
sample size of 72 participants would have a power of 80.7% 
(95% CI [78.11, 83.10] in 1,000 simulations) to detect a RT 
difference of 19 ms. We kept recruiting participants until 
the number of participants reached the predetermined sam-
ple size after data exclusion. In total, 75 participants (33 
females, Mage = 24.6 years, SDage = 4.3) were recruited via 

Fig. 1   Example of the stimuli. A An example trial in the search task. 
Participants were asked to search for the target shape singleton (either 
a diamond amongst circles or a circle amongst diamonds) in the pres-
ence of an irrelevant distractor color singleton (either a green shape 

amongst red shapes or a red shape amongst green shapes). B An 
example trial in the probe task. Participants were asked to indicate the 
presence of a dot offset (Go trials) or refrain from responding if no 
dot was missing (No-Go trials)
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the Prolific platform. All participants received a monetary 
reward (£5.50) in exchange for 50 min of participation.

Before the experiment, all participants provided writ-
ten informed consent. The experiment was approved by the 
Ethical Review Committee of the Faculty of Behavioral and 
Movement Sciences of Vrije Universiteit Amsterdam and 
was conducted in accordance with the guidelines of the Hel-
sinki Declaration.

Stimuli and task

The experiment was programmed in OpenSesame (Mathôt 
et al., 2012) using OSweb, and run on PC devices using 
JATOS (Lange et al., 2015). The sizes of stimuli are reported 
in pixels under a display resolution of 1,024 × 768 and the 
colors are reported in RGB values (red/green/blue). All stim-
uli were superimposed on a dark gray background (RGB: 
94/94/94). The experiment comprised a search task in two-
thirds of the trials and a probe task in one-third of the trials.

Search task

 We used a modified version of the additional singleton task 
(Theeuwes, 1991, 1992) as the search task. Each search trial 
started with a display showing a fixation dot for a duration 
of 500 ms. The fixation dot (20 × 20 px) remained on-screen 
throughout the search trial. Subsequently, a placeholder dis-
play was shown for 800 ms, followed by a search display 
for 2,000 ms or until a response was given. The placeholder 
display consisted of eight equidistant elements placed on an 
imaginary circle with a radius of 224 pixels around the cen-
tral fixation dot. Each element was created by superimposing 
a diamond (115 × 115 px; RGB: 192/192/192) on a circle 
(102 × 102 px; RGB: 192/192/192) with a dot (9 × 9 px; 
RGB: 192/192/192) in the center. The search display con-
sisted of one shape singleton (the target), one color singleton 
(the distractor), and six other non-singletons (see Fig. 1a). 
Each of them contained either a horizontal or vertical line 
(41 × 3 px; RGB: 192/192/192). The target could either be 
a diamond (115 × 115 px) amongst circles or a circle (102 
× 102 px) amongst diamonds. The distractor was presented 
on each trial and was either colored red (RGB: 255/0/0) 
amongst green elements or green (RGB: 0/208/0) amongst 
red elements. Distractor color (red or green), target shape 
(circle or diamond), and line orientation within the target 
singleton (horizontal or vertical) were randomly determined 
on each search trial. Participants were instructed to search 
for the target and indicate the line orientation within it as 
fast and accurately as possible by pressing either the “up” 
or the “left” arrow key for vertical or horizontal orientation, 
respectively.

Probe task

 The probe task was similar to the search task except that the 
placeholder display was presented for 400, 800, or 1,200 ms 
(equally likely), followed by a probe display for 2,000 ms or 
until a response was given. The probe display consisted of 
four circles and four diamonds randomly distributed within 
the visual array. On 20% of all probe-task trials (No-Go tri-
als), each shape contained a light gray dot in the middle, 
similar to the placeholder display. On 80% of all probe trials 
(Go Trials), one dot was missing in the probe display, creat-
ing a probe offset at that location relative to the placeholder 
display. Participants were instructed to press the spacebar 
key as fast as possible in trials with a probe offset (Go Tri-
als) and withhold a response in trials without (No-Go trials).

Design and procedure

To increase the statistical power for the probe task, only four 
locations were used to present the target and the distractor 
in the search task, and the probe offset in the probe task. 
These four locations (fixed for each participant) could either 
be at the diagonal positions or the horizontal and vertical 
positions of the imaginary circle (counterbalanced across 
participants). In the search task, one of these four locations 
represented a high-probability location (HPL), meaning that 
the distractor was more likely (65%) to be presented at that 
location than at any of the remaining three low-probability 
locations (LPLs). The target was equally likely presented 
at each of these four locations and never overlapped with 
the distractor. In the probe task, the probe offset occurred 
equally likely at each of these four locations.

The experiment consisted of 12 blocks of 90 trials. Each 
block comprised 60 search trials and 30 probe trials (six 
No-Go and 24 Go trials). In each block, the search trials 
and the probe trials were randomly intermixed with the 
constraint that two probe trials could not be presented in 
sequence. If participants made an incorrect response, a dis-
play with the letter ‘X’ was provided in the middle of the 
screen for a randomly varying duration between 800 and 
1,000 ms. After each block, participants were given feed-
back about their average RTs and the percentage correct 
(calculated across trials regardless of trial types). Before 
the experiment, participants were given instructions and two 
practice blocks each to become familiar with both tasks. 
There was no distractor regularity during the practice blocks. 
Participants were only allowed to move on to the experiment 
if the accuracy in both practice blocks is above 55%. Two 
questions were used to assess participants’ awareness of the 
distractor regularity at the end of the experiment. Specifi-
cally, participants were asked if they were aware that one 
location contained the distractor more often than any of the 
other locations, and indicate which of the eight possible 
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locations they thought contained the distractor more often 
regardless of their answer to the previous question.

Data‑analysis

For statistical analysis, we built generalized linear mixed 
models (GLMMs) on the accuracy data and linear mixed 
models (LMMs) on RTs using the lme4 package (Bates et al., 
2015) in R (R Core Team, 2020). The mixed-effect models 
have the advantage of handling the unbalanced design (as 
in the current study) and provide more statistical power to 
find the true effect by utilizing the dataset at the trial level 
(Brysbaert & Stevens, 2018).

For the search task, the distractor location (HPL, LPL) 
was included in the fixed-effects structure as the factor of 
interest. To ensure that distractor location (HPL, LPL) is 
not confounded with target location, we excluded trials in 
which the target was presented at the HPL. To control the 
variance that may be explained by the irrelevant features of 
the task or the stimuli, we included the following control 
factors in the fixed-effects structure: target line orientation 
(horizontal, vertical), target shape (circle, diamond), target 
color (green, red), the physical locations of the target (0~7), 
the physical locations of the distractor (0~7), target loca-
tion priming (yes, no), distractor location priming (yes, no), 
probe-target location priming (yes, no), probe-distractor 
location priming (yes, no), and distractor awareness (yes, 
no). Here, location priming refers to whether a specific item 
was presented at the same location in consecutive trials. 
The random-effect structure was determined by running the 
maximal effect structure justified by the design (Barr et al., 
2013). Specifically, the random-effects structure included 
by-participants random intercepts and by-participants ran-
dom slopes for distractor location. The LMMs of RTs and 
the GLMMs of the accuracy data shared the same fixed- and 
random-effects structure. Additional analyses were run to 
test whether target processing was hampered when the target 
was presented at the HPL. The mixed-effect models were 
built by using the same fixed- and random-effects structure 
as mentioned above but replacing the factor of interest (i.e., 
distractor location) with target location (HPL, LPL). To 
prevent target location (HPL, LPL) being confounded with 
distractor location, we excluded trials in which the distractor 
was presented at the HPL in this latter analysis.

For the probe task, SOA (400, 800, 1,200 ms), probe loca-
tion (HPL, LPL), and their interaction were entered into the 
fixed-effect structure as the factors of interest. Other con-
trol factors in the fixed-effects structure included physical 
probe location (0~7), target-probe location priming (yes, 
no), distractor-probe location priming (yes, no), and distrac-
tor awareness (yes, no). By-participants random intercepts 
and by-participants random slopes for probe location were 
included as random effects. All fixed effects were dummy 

coded. The degrees of freedom were estimated by the Satter-
thwaite approximation and the p-values were obtained from 
the lmerTest package (Kuznetsova et al., 2017). The Bayes 
factors (BF01) favoring the null hypothesis were calculated 
and reported for insignificant findings using BayesFactor R 
package (Morey et al., 2018) with the default prior (Jeffreys-
Zellner-Siow, JZS). The estimate (β) of each fixed effect of 
interest was provided as the measure of the effect size.

Results

In total, three participants whose accuracy was lower than 
2.5 standard deviations of the overall mean accuracy in the 
search task were excluded, leaving 72 participants for analy-
sis. Incorrect responses, as well as responses that were faster 
than 200 ms, were excluded from the RT analyses. For each 
participant, the trials with the RTs that exceeded the ±2.5 
standard deviation from the overall mean RT (collapsed 
across conditions) were also removed from the RT analyses.

Search task

 As shown in Fig. 2a, responses were faster (β = 31.4, SE 
= 4.15, t(75.1) = 7.57, p < .001) and more accurate (β = 
0.24, SE = 0.065, z = 3.67, p < .001) when the distractor 
was presented at the HPL than at the LPLs, indicating that 
the distractor was suppressed for attentional selection when 
it was presented at the HPL. Moreover, the target search 
was slower (β = 18.1, SE = 5.59, t(68.7) = 3.24, p = .002) 
when the target was presented at the HPL as compared to 
the LPLs (see Fig. 2b). No significant difference was found 
in the search accuracy between trials in which the target was 
presented at the HPL and the LPLs (β = 0.04, SE = 0.069, 
z = 0.65, p = .518, BF01 = 28.79). Together, these results 
suggested that statistical learning yielded a feature-blind 
spatial suppression on the HPL so that any singleton (target 
or distractor) presenting at this location would compete for 
less attentional selection.

Probe task

 In general, participants performed well in the probe task. 
They had low false alarm rates in the No-Go trials (M = 
6.3%, SD = .048) and low miss rates for the Go trials (MHPL 
=1.1%, SDHPL = .028, MLPL = 0.9%, SDLPL = .015).

Figure 2c shows the mean RTs as a function of probe 
location (HPL, LPL) and SOA (400, 800, 1,200) in the probe 
task. The LMMs analysis on RTs revealed a significant main 
effect of probe location (χ2(1) = 3.98, one-tailed p = .023). 
Participants were slower at detecting the probe offset at the 
HPL than at the LPLs (β = 14.6, SE = 7.24, t(86) = 2.02, 
p = .046). There was also a significant main effect of SOA 
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(χ2(2) = 0.51, p < .001), with faster probe detection at 1,200 
ms SOA than at 800 ms SOA (β = 17.3, SE = 3.49, t(20402) 
= 4.95, p < .001), and at 800 ms SOA than at 400 ms SOA 
(β = 64.4, SE = 3.49, t(20402) = 18.43, p < .001). However, 
the interaction between probe location and SOA was not sig-
nificant (χ2(2) = 0.51, p = 0.773). The Bayes factor analysis 
suggested extreme evidence (BF01 = 517.40) for the model 
without the interaction effect (null hypothesis) relative to the 
model with it (alternative hypothesis).

Awareness test

 Thirty-one participants reported that they were aware of 
the HPL during the experiment, and 18 of them correctly 
indicated the HPL. None of the remaining 41 participants, 
who reported being unaware of the HPL, correctly indicated 
the HPL. Several model comparisons were run on RTs and/
or accuracy data to check whether awareness (yes, no) inter-
acted with distractor location (HPL, LPL) or target location 
(HPL, LPL) in the search task, and probe location (HPL, 
LPL) in the probe task. Participants were labeled as ‘yes’ in 
the awareness factor if they reported being aware and cor-
rectly indicated the HPL. Plan model-comparisons in the 
search task indicated no interaction between awareness and 
distractor location in RTs (χ2(1) = 1.47, p = .226, BF01 = 
10.17) and accuracy (χ2(1) = 2.48, p = .115, BF01 = 14.34), 
and no interaction between awareness and target location in 
RTs (χ2(1) = 0.81, p = .367, BF01 = 6.42) and accuracy 
(χ2(1) = 0.01, p = .918, BF01 = 17.94). Planned-model 
comparisons in the probe task also indicated no significant 

interaction between awareness and probe location in RTs 
(χ2(1) = 0.54, p = .463, BF01 = 12.50).

Discussion

The current study investigates whether spatial suppres-
sion induced by statistical learning is applied at the learned 
(expected) time of display onset or prior to display onset. To 
this end, we combined an occasional probe offset detection 
task with a search task in which a distractor was presented 
more frequently at one location to induce statistical learning. 
Crucially, we manipulated the temporal relationship between 
the probe display and the search display such that the probe 
display could be presented before, simultaneously with, or 
after the expected onset of the search display. We replicated 
the classic statistical learning effect of Wang and Theeuwes 
(2018a) by showing a facilitated search for the target when 
the distractor was presented at the HPL (see also Ferrante 
et al., 2018). As shown before, target search was hampered 
when it was presented at the HPL, indicating that the sup-
pression was spatial and basically feature-blind.

The critical finding of the current study is that regardless 
of the SOA, probe detection was always slower when the 
probe offset occurred at the HPL as compared to the LPLs. 
This indicates that prior to display onset, there was already 
suppression of the location where during the search the dis-
tractor was likely to be presented. It is important to note that 
in two-thirds of the trials, participants performed the visual 
search task in which the search display was revealed exactly 

Fig. 2   Statistical learning (SL) effects. A Mean reaction times (RTs) 
and accuracy in the search task when the distractor was presented at 
the high-probability location (HPL) or at a low-probability location 
(LPL). B Mean RTs and accuracy in the search task when the target 

was presented at the HPL location or at a LPL (indirect effect of SL). 
c Mean RTs as a function of probe dot location (HPL, LPL) in the 
probe task. Error bars denote ±1 SEmean



1018	 Attention, Perception, & Psychophysics (2023) 85:1012–1020

1 3

after an SOA of 800 ms. If suppression would have been 
applied only at the moment the search display was expected 
to appear, one would have expected attentional suppression 
to only occur at an SOA of 800 ms as participants only had 
experience with this SOA during visual search. Clearly, our 
data indicated no hint of interaction between SOA and probe 
location, suggesting that suppression was already in place 
well before the display came on.

Visual search is hypothesized to be guided by a spatial 
priority map where the location with the highest weight will 
be prioritized for attentional selection. Recent progress in 
the field of visual attention has recognized that the priority 
map is formed by integrating the influences of goal-driven, 
salience-driven, and history-driven (e.g., statistical learning, 
value, and priming) factors (Awh et al., 2012; Theeuwes, 
2019; Theeuwes et al., 2022; Wolfe, 2021). The current find-
ings suggest that prior to display onset, the spatial prior-
ity map as it is shaped by statistical learning is already in 
place deprioritizing the location that is likely to contain the 
distractor. After display onset, the priority map is further 
updated by integrating the statistical learning effect with 
the influences of top-down and bottom-up effects. This is 
consistent with the findings of Gao and Theeuwes (2020), 
who showed that biases due to statistical learning and biases 
due to explicit top-down instructions independently affected 
visual selection, suggesting that these effects independently 
modulate the activity within the spatial priority map. Simi-
larly, Huang, Theeuwes, and Donk (2021a) showed that eye 
movements were driven by the integrated spatial weights 
calculated based on the contributions of salience-driven, 
goal-driven, and selection history. Critically, the earliest 
possible oculomotor responses were already biased away 
from the high-probability distractor location, suggesting that 
this bias was already in place before the first eye movement 
was launched.

Unlike the findings of Grubert and Eimer (2020), the 
statistically learned suppression in the current study was 
not implemented only at the moment when the search dis-
play was expected. Instead, the results from the probe task 
suggested that the suppression was also applied 400 ms 
before and after the expected display onset. This inconsist-
ency can be attributed to the different underlying processes. 
In Grubert and Eimer (2020), participants were explicitly 
informed of the alternating nature of the target. Therefore, 
it was possible for them to volitionally activate the relevant 
target template through top-down control. In contrast, in the 
current study, the spatial regularity of the distractor in the 
current study was unbeknown to participants and could only 
be learned through repetitive experiences.

The findings from the current study are to be distin-
guished from the proactive suppression process proposed 
by the signal suppression hypothesis (Gaspelin et al., 2015, 
2017; Sawaki & Luck, 2010, 2013). The hypothesis posits 

that briefly after the presentation of the search display, the 
irrelevant but salient singleton will automatically generate 
an attend-to-me signal that aims to capture attention. Such 
an attend-to-me signal can be proactively suppressed before 
any attentional orientation has been made. In this sense, 
according to Gaspelin et al. (2015), proactive suppression 
does not mean before display onset (as we suggest here), 
but instead implies suppression before attention has shifted 
to the location. Notably, the suppression process as adhered 
to by the signal suppression hypothesis is assumed to be 
feature-based and engaged in a search scenario that required 
a feature search mode (Bacon & Egeth, 1994). In contrast, 
the task employed here encourages the use of what has been 
called the “singleton-detection mode,” and as such, there is 
no room for feature-based suppression as described by the 
signal suppression hypothesis (Gaspelin et al., 2015, 2017; 
Sawaki & Luck, 2010, 2013). Nevertheless, previous stud-
ies have shown that the type of learned suppression that we 
investigate here also occurred when participants engaged in 
feature search (van Moorselaar et al., 2021; Wang & Theeu-
wes, 2018c), indicating that learned suppression is not lim-
ited to any particular search strategy.

Although the purpose of the current study is to elucidate 
the proactive aspect of the statistically learned suppression, 
it does not necessarily suggest that proactive and reac-
tive mechanisms are “all-or-none.” In fact, there is ample 
evidence that the reactive mechanism also plays a role in 
addition to proactive suppression. Several eye-tracking 
studies have indicated the co-existence of both mechanisms 
(Huang, Theeuwes, & Donk, 2021a;Sauter et al., 2021 ; 
Wang, Samara, & Theeuwes, 2019a). While observers were 
preparing for the upcoming visual search, the suppression 
was proactively implemented at the high-probability loca-
tion so that fewer initial saccades landed on the distractor at 
that location. Occasionally when the eye movements were 
captured by the distractor, a rapid disengagement of the eyes 
was found when the distractor was presented at the high-
probability location (Sauter et al., 2021; Wang, Samara, & 
Theeuwes, 2019a), suggesting a post-capture suppression 
process. Note that the post-capture suppression could have 
also been considered as a sustained effect or a “leak” from 
proactive suppression as the rapid disengagement from the 
distractor at the high-probability location has been found 
even in the earliest possible initial saccades (Sauter et al., 
2021), suggesting that such eye-movements have been pro-
grammed beforehand.

One question that the current study cannot answer is 
whether the suppression is constantly present throughout 
the experiment or whether it is brought into operation each 
trial, during the inter-stimulus interval in the anticipation of 
the upcoming search display. Using EEG recording, Wang, 
van Driel, et al. (2019b) showed that starting at about 1,220 
ms before display onset, the high-probability location was 
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suppressed as evidenced by increased parieto-occipital 
alpha power contralateral to the high-probability distractor 
location. This suggests that suppression is not in operation 
throughout the experiment but is applied in each trial well 
before the anticipated display onset.

The current experiment shows that suppression is not 
only applied at the moment in time the search display is 
presented. Indeed, 400 ms before the search display comes 
on, there is already suppression of a location within the 
placeholder display that, during a search display, typically 
contains a distractor. The current study using the probe tech-
nique cannot answer the question of whether there is also 
suppression of the anticipated high-probability location in a 
completely empty field. To measure the distribution of atten-
tion before the search display appears, we need a placeholder 
display. A recent study has shown that the presence of any 
stimulus may prompt the retrieval of the assumed priority 
map with its learned weights (see Duncan et al., 2022).

In sum, the present results indicated that the spatial sup-
pression induced by statistical learning was proactively 
implemented not just before attentional orientation but also 
prior to the expected onset of the search display. We con-
clude that statistical learning exerts its influence on the first 
feed-forward information that is utilized to shape the priority 
map at a relatively early point in time.
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