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Previous studies have shown that attention becomes biased toward those locations that frequently con-
tain a target and is biased away from locations that have a high probability to contain a distractor. A
recent study showed that participants also learned regularities that exist across trials: Participants were
faster to find the singleton when its location was predicted by the location of the target singleton on the
previous trial. Note, however, that this across-trial statistical learning was only demonstrated for parallel
search involving “pop-out” singleton targets. The current study investigated whether there is also learn-
ing of across-trial regularities when search is serial, using a T-among-Ls task. In Experiment 1, using
search displays with a gray T-target among gray Ls, we found that participants did not learn the existing
across-trial regularities. In Experiment 2 we used the same display and same regularities except that dur-
ing the first half of the experiment the targets were colored red, allowing feature search. Critically, now
participants did learn the across-trial regularities during pop-out feature search and the learned biases
persisted when search was serial again. Participants were not aware of these regularities suggesting that
learning was automatic and implicit. We propose that across-trial target-target associations learned dur-
ing feature search shape a flexible priority map whereby the selection of the predicting location results
in up-weighting of the predicted location on the next trial. This flexible priority map remained active
even when search task changed dramatically from parallel to serial search.

Public Significance Statement
The present study investigates the boundary conditions of implicit learning across trials. We show
that during slow and serial search participants are not able to learn across-trial statistical regularities,
most likely because there is too much noise for learning to occur. When we created conditions that
reduced noise and facilitated the learning of across-trial statistical regularities, we show that the
learned target-association biases in the feature search could persist when there was much noise
again during serial search.
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Our visual environment contains abundant information, both
relevant and irrelevant. Finding relevant objects while ignoring
irrelevant and distracting information is a fundamental skill of any

organism that needs to survive in this cluttered environment. By
selectively attending relevant information, while inhibiting infor-
mation that is irrelevant, search can become efficient. Tradition-
ally, attentional selection was considered to be the result of the
interaction between the goals of the observer (current selection
goals) and the physical properties of the visual environment (sali-
ence of the objects; Egeth & Yantis, 1997; Theeuwes, 2010).
Recently, Awh et al. (2012) argued that, in many situations, selec-
tion is not merely the result of goals of the observer nor the result
of stimulus-driven factors (i.e., bottom-up saliency). As a third
factor, selection history was proposed. Selection history refers to
previous experiences in searching a display eliciting enduring
selection biases that are unrelated to the intentions of the observer
or the salience of the objects in the visual field (Anderson et al.,
2021; Theeuwes, 2018, 2019).

Many familiar phenomena belong to the family of selection his-
tory effects. For instance, intertrial repetitions of target and dis-
tractor features and/or their locations facilitates search on the next
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trial, known as repetition priming (e.g., Allenmark et al., 2021;
Lamy et al., 2008; Maljkovic & Nakayama, 1994). It was shown
that priming can make a stimulus appear to be more salient even
though it physically had the same salience as the stimulus that was
not primed (e.g., Theeuwes & Van der Burg, 2013). In the same
vein, stimulus features previously associated with a monetary
reward are more salient than nonrewarded features, even if they
are no longer rewarded, an effect known as value-driven atten-
tional capture (e.g., Anderson, 2019; Anderson et al., 2011; Fail-
ing & Theeuwes, 2018; Qin et al., 2021).
It is also known that participants can learn statistical regularities

present in the environment, which in turn affects attentional selec-
tion. Through a process known as visual statistical learning (VSL)
participants extract the spatial and/or temporal regularities present
in the visual input, affecting attention and perception (e.g., Ander-
son et al., 2021; Frost et al., 2019; Perruchet & Pacton, 2006). Fol-
lowing the seminal work on statistical learning by Saffran, Aslin,
and Newport (1996), who demonstrated that infants can extract tri-
syllabic patterns from continuous speech, a large number of stud-
ies have shown that individuals of all ages possess remarkable
abilities in successful tracking patterns of co-occurrence of tempo-
rally adjacent elements in input streams with different types of vis-
ual stimuli (e.g., Dennis et al., 2006; Fiser & Aslin, 2002; Howard
et al., 2008; Olson & Chun, 2001; Thomas et al., 2018; Turk-
Browne et al., 2005; Turk-Browne & Scholl, 2009). It has been
claimed that this process of assimilating statistical patterns in the
input usually occurs incidentally and automatically (e.g., Aslin et
al., 1998; Fiser & Aslin, 2001; Turk-Browne et al., 2005). Provid-
ing a powerful learning mechanism, VSL plays a critical role in
many cognitive domains (see Bogaerts, Frost, & Christiansen,
2020 for a discussion), such as language acquisition (e.g., Saffran,
Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996), object
and scene perception (e.g., Fiser & Aslin, 2005; Turk-Browne
et al., 2010), classification learning (e.g., Aron et al., 2006;
Aron et al., 2004), and memory (e.g., Brady et al., 2009; Umemoto
et al., 2010).
More directly related to the current study, several studies provided

evidence that VSL can bias attentional selection in an implicit way.
For instance, participants can learn that a certain location in a search
display has a higher probability of containing targets (e.g., Addleman
et al., 2018; Ferrante et al., 2018; Geng & Behrmann, 2002, 2005) or
distractors (e.g., Goschy et al., 2014; Wang & Theeuwes, 2018; Won
et al., 2019; Zhang et al., 2019), respectively, accelerating target
detection or enhancing distractor suppression, which both result in
more efficient search. It is generally assumed that VSL modulates the
allocation of visual attention via dynamic weight adjustments within
the spatial priority map (e.g., Anderson et al., 2021; Fecteau &
Munoz, 2006; Itti & Koch, 2001; Zelinsky & Bisley, 2015), even
though others have challenged this view (see Allenmark et al., 2019;
Liesefeld & Müller, 2021; Sauter et al., 2018). Taking the study by
Geng and Behrmann (2002) as an example, each spatial location is
initially weighed equally due to the same physical saliency and fea-
tures (i.e., similar letters). But as, over time, different targets are
selected, the weights of target locations selected in the past episodes
are accumulated so that the location selected most frequently
obtained the highest weights within the priority map. As a result,
search is facilitated when the target appears at this prioritized loca-
tion. Likewise, the repeated suppression of a location containing dis-
tracting information results in a gradual de-prioritization. It is worth

noting that the prioritization and de-prioritization of locations based
on target and distractor regularities has been shown in a wide range
of search paradigms, such as simple feature search (Ferrante et al.,
2018), classical additional singleton paradigm (Wang & Theeuwes,
2018), additional singleton in different dimension with dense displays
(Goschy et al., 2014). Noting that the effect of location probabilities
on attentional selection shares many characteristics with the learning
of (motor) habits, such as the incidental and gradual nature of the
learning, and that it is not affected by working memory load (Gao &
Theeuwes, 2020; Won & Jiang, 2015), led some to characterize it as
“habit-like attention” (see Jiang, 2018; Jiang & Sisk, 2019, for a
discussion).

Such distributional regularities (pertaining the frequency of
occurrence of a certain stimulus on a certain spatial location) are,
however, clearly not “the only game in town.” Another line of
research that focuses on the VSL of the relationship among objects
is known as contextual cueing (CC) which is considered to be an
example of the spatial-binding relationship (see Goujon et al.,
2015; Jiang et al., 2019; for a review). Compared with new search
displays, displays that are repeated across trials (having the same
spatial configuration of target and distractors) improve visual
search performance, suggesting that the repeated configurations
help to guide attention toward the associated target locations (e.g.,
Bergmann & Schubö, 2021; Chun & Jiang, 1998, 2003; Jiang &
Wagner, 2004). In addition, pairs or triplets of visual stimuli that
regularly co-occur in space can also be extracted and are then per-
ceived as groups, increasing the perceptual capacity (e.g., Brady et
al., 2009; Umemoto et al., 2010; Zhao et al., 2011; Zhao & Yu,
2016).

Certainly, more studies on VSL targeted the learning of sequen-
tial regularities (i.e., temporally co-occurring pairs, triplets, or lon-
ger sequences), owing to the functional significance for the visual
system to use contextual information across time (e.g., Bogaerts,
Richter, et al., 2020; Fiser & Aslin, 2002; Henin et al., 2021; Pac-
ton et al., 2015; Pacton & Perruchet, 2008; Remillard, 2009; Scha-
piro et al., 2013; Turk-Browne et al., 2005; Turk-Browne &
Scholl, 2009; Yu & Zhao, 2018; Zhao et al., 2013). For example,
in the study by Fiser and Aslin (2002), participants viewed a
movie with single shape horizontally moving back and forth until
it was completely occluded by the vertical bar and switched to
another shape. The shape sequence was not random but rather
structured into triplets, so that after the occurrence of the first
shape of a triplet the following shapes were predictable. It was
found that observers were sensitive to this triplet structure contain-
ing temporal contextual information. This sensitivity to structure
leads to implicit perceptual anticipation and faster object recogni-
tion (Turk-Browne et al., 2010). This raises the question if sequen-
tial, across-trial regularities can also modulate attentional selection
in visual search. In other words, is it possible to use (implicit)
knowledge of temporal structure to guide attention in space? This
is by no means self-evident. Contrary to the effect of distributional
regularities that has been commonly observed, the modulation of
attentional allocation by across-trial regularities is not intertwined
with repetition (location) priming nor can it result from changes in
the weights of a single, static priority map. Instead, it requires that
weights within the spatial priority map are dynamically adapted on
a trial-to-trial basis.

In four different experiments, Li and Theeuwes (2020) demon-
strated that attentional selection can indeed be biased by across-
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trial regularities concerning the target locations. Participants per-
formed the additional singleton task (Theeuwes, 1991, 1992)
searching for a shape singleton (i.e., a circle among diamonds or
a diamond among circles) within a search array with eight items
positioned in an imaginary circle. Although the target was
equally likely to appear at one of eight locations, unbeknownst
to participants, statistical regularities regarding target positions
across trials were built in. The regularities were two temporal
sequences with two target locations each (e.g., T1-.T2), which
meant the position of T1 on the current trial was 100% predictive
of the position of T2 on the next trial. For example, a target sin-
gleton on the leftmost position (T1) was always followed by a
target singleton on the rightmost position in the display (T2; see
Figure 1A). The results showed that RTs for predictable T2 tar-
gets (which we will here label the predicted condition) were
faster than those for T1 targets (labeled the predicting condition)
or targets appearing on locations that were not included in the
two regular temporal sequences (labeled the neutral condition),
suggesting that observers had learned the across-trial regularities
and used them to bias attentional selection. Moreover, this pat-
tern of results remained intact when salient color distractors
were present. More recently, Wang et al. (2021) investigated the
effect of across-trial regularities regarding distractor locations
using the same additional singleton task. Their study also indi-
cated that participants learned these regularities and further
showed that learning was very fast (with RT benefits present af-
ter just a few trials). In both studies, participants were basically
unaware of the regularities present in the search displays. As
such, we can conclude that participants can learn—in an auto-
matic and implicit way—across-trial regularities, which in turn
facilitates search.
Although Li and Theeuwes (2020) firmly established the

across-trial VSL for target locations in all four experiments, each
and every experiment involved parallel feature search in which

the target was a singleton popping out from the display. When the
target is a pop-out singleton, it is reasonable to assume that
across-trial target-target location associations are easily formed
because on each trial attention is immediately shifted to the target
singleton. In this way, participants are able to associate a shift of
attention to a location on trial T1 with a shift of attention to a par-
ticular other location on the following trial T2. Even though from
a theoretical point of view this finding is crucial, it is obvious that
in everyday life, there is hardly any pure pop-out search, and most
of the time search is serial and inefficient. Hence, the aim of the
present study was to gain further insight into the modulation of
attention by target regularities that span multiple trials, by investi-
gating whether across-trial facilitation also occurs when search is
serial and inefficient. During this type of search, attention is
deployed serially to each item in the display until the target is
found (Treisman & Gelade, 1980; Wolfe, 1994). It can be
hypothesized that such serial scanning might reduce or even pre-
vent the formation of across-trial association between target loca-
tions, which would result in no across-trial biasing of attention.
This would point to an important boundary condition for VSL. On
the other hand, especially because search is so inefficient, making
use of hidden regularities may improve search dramatically. If
across-trial associations can be learned, their effect during serial
search are expected to be much more substantial. The present
study conducted two experiments involving search displays con-
sisting of eight items presented at fixed locations on an imaginary
circle. The built-in across-trial pair regularities were similar to
those of Li and Theeuwes (2020) except that instead of searching
for a pop-out target, participants searched for a rotated “T” target
among seven rotated “L” distractors. The subtle difference
between distractors and targets, both composed of vertical and
horizontal lines but with a different spatial arrangement, forces
search to be serial (Bergen & Julesz, 1983; Egeth & Dagenbach,
1991; Kwak et al., 1991). Indeed, the spatial-configuration search

Figure 1
Depiction of the Across-Trial Regularities Concerning Target Locations and the Stimulus Display
Sequence in Experiment 1

Note. (A) Illustration of two regularity pairs: A predicting trial (denoted with red circles filled with left-oriented diag-
onal lines) predicts the location of the target on the next trial (labeled as predicted; denoted with green circles filled
with right-oriented diagonal lines). The neutral condition (denoted with unfilled gray circles) consists of filler trials
where the target appears randomly at other four locations. (B) Example of a stimulus display sequence with an across-
trial regularity (a rotated “T” target on the far left is followed by a rotated “T” target on the far right). Note the target
rotation was random from trial to trial. See the online article for the color version of this figure.
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where the target is defined by the spatial arrangement of line seg-
ments, such as the T-among-Ls task, is generally considered to be
the gold standard for true “serial” search (Wolfe, 1998).

Experiment 1

Experiment 1 was designed to determine whether participants
could learn statistical regularities regarding the target positions
across trials in serial search. If participants can extract across-trial
regularities of target positions, RTs for trials that are predicted by
the previous trial should be faster than comparable trials that are
not predicted by a previous trial.

Method

Participants

Using G*Power (Faul et al., 2007), an a priori power analysis
was conducted, with a = .05, 1 – b = .9, and the default value of
r = .5 as the assumed correlation among repeated measures (note
that this is conservative, see Brysbaert, 2019). Because no prior
research regarding the effect of across-trial regularities on serial
search was available,1 we chose f = .25 (corresponding to hp

2 =
.06) as the smallest effect size of interest, reflecting a theoretically
meaningful effect in psychological research (see also Brysbaert,
2019). Our effect of interest was the main effect of target regular-
ity (specifically the difference between predicted and unpredicted
conditions) in the two-way repeated-measures analysis of variance
(RM-ANOVA) with block and target regularity as within-subject
factors. The minimum sample size for this effect was calculated to
be 44 participants. Considering the additional noise in online
experiments, 59 participants (22 females and 37 males; Mage =
24.64 years, SDage = 5.79) were recruited via Prolific (Palan &
Schitter, 2018). Participants were rewarded £5.63 after finishing
the whole experiment. Two participants who had overall accura-
cies lower than 75% were excluded. All participants reported nor-
mal or corrected-to-normal visual acuity and gave informed
consent before the experiment. The study was approved by the
Ethics Committee of Department of Experimental and Applied
Psychology of Vrije Universiteit Amsterdam.

Apparatus and Stimuli

The experiment was programmed using OpenSesame (3.3.9b1)
and run via OSWeb (Mathôt et al., 2012) and JATOS (Lange et
al., 2015). Participants completed the task on their own computers
or laptops. Considering the fact that resolution of monitors could
vary, the resolution specified in the experiment was 1,024 3 768
pixels (px). All stimuli would be displayed on this “virtual moni-
tor” in the center of the screen.
The search display contained one “T” target (rotated 90° to the

left or right) and seven “L” distractors in light gray (RGB: 210/
210/210) presented against a black (RGB: 30/30/30) background.
Each stimulus subtended 64 3 64 px and was centered 210 px
from a white (RGB: 255/255/255) fixation dot with a radius of 8
px. “L” distractors had a 12.5% offset in the line junction to
increase search difficulty, forcing the search to be serial in nature.
“L” distractors had 4 possible rotations (0°, 90°, 180°, or 270°).

Design and Procedure

The target “T” was tilted 90° to the left or right with equal prob-
ability and was present on each trial. The target was equally likely
to appear at one of eight locations. On each trial, the rotation angle
for different “L” distractors was randomly selected and assigned
to the nontarget locations, with the constraint any given rotation
angle could not be used more than twice in the same search array.
All the trials were randomized within each block except the partic-
ular regularities regarding target locations across trials. Specifi-
cally, for half of the participants, if on a trial the target “T” was
presented at the leftmost position of the display, it was always fol-
lowed by a subsequent trial with the target presented at the right-
most position of the display. For the same group of participants, if
the target “T” was presented at the top position in the display, it
was always followed by the target at the bottom position on the
following trial (see Figure 1A). For the other half of participants,
regularity pairs with opposite directions (rightmost [R] ! leftmost
[L], bottom [B] ! top [T]) were built in. The same regularity pair
could not repeat back to back (i.e., the trial sequences RLRL and
BTBT were not allowed). Notably, the regularities only concerned
the spatial location of the target, the identity of the target (rotated
to the left or right) varied randomly across trials.

Each trial began with the presentation of a fixation dot at the center
of the screen. After 900 ms, the search array was presented, which
remained on until the participant responded. Participants’ task was to
search for the rotated “T” (among the rotated “L” distractors) and
report its rotation. They were instructed to maintain fixation on the
central dot while doing the task and to press the appointed key (“Z”
and “/” for respectively left and right rotation) as fast and as accu-
rately as possible to report the target’s orientation. If participants
took too long to respond (. 3,000 ms), or responded incorrectly, the
text display “Your response was wrong!” was presented for 800 ms
together with a 800-Hz tone. At the end of each block, feedback
regarding accuracy and mean RTs in the just completed block was
given. Breaks between blocks were controlled by participants them-
selves (with a minimum of 30 seconds).

The whole task consisted of an experiment part (practice blocks
plus eight experimental blocks) and a questionnaire part. The experi-
mental blocks did not start until the performance in the practice block
with all2 practice trials in a random order (with no regularities pres-
ent), had reached the criteria of accuracy. 85% as well as mean RT
, 2,000 ms, which was to make sure participants got familiar with
the task during the practice. Each experimental block contained 64
trials, yielding 16 predicting trials (predictive of the upcoming target
location), 16 predicted trials (with a predictable target location), and
32 neutral trials (with a target on one of the locations that were not

1 Note that previous work by Li and Theeuwes (2020) on the effect of
across-trial regularities in parallel search reported a difference between
predicted and unpredicted conditions with a large effect size of f = 0.42
(average across all experiments). Given our hypothesis that across-trial
regularities might not drive search in the same way in serial search, we did
not base the sample size calculation on this effect size. It is however worth
noting that a power calculation with n = 44 and this effect size results in a
power of 99.98%.

2 Owing to a programming error, there were 20 trials in a practice block
for the first 51 participants who performed on average 67 (SD = 49)
practice trials. The trial count in a practice block was 40 for the final six
participants who performed on average 93 (SD = 41) practice trials.
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included in the two regular sequences). After finishing the experi-
ment part, a questionnaire with three questions was filled in. First,
participants were asked whether they had noticed a sequence of some
target locations, such as one specific location that was always fol-
lowed by another specific location. Subsequently, two eight-alterna-
tive forced-choice questions were asked. More specifically,
participants were shown a search array with a target at the predicting
location (among seven “L” distractors) on the left side of the screen,
and there was an array of eight circles representing eight locations on
the right side of the screen. They were asked to choose one location
that they thought the target was most likely to appear on following
the search array presented on the left side of the screen. The same
question was asked for the second regularity pair. All three questions
were followed by a confidence rating on a five-point scale (1 = not
certain at all, 5 = very certain).

Results

In the current experiment there were three trial types: predict-
ing, predicted, and neutral (see Figure 1A). Even though the pre-
dicting and neutral trials were both unpredicted by the previous
trial, it is important to note that there is a difference between these
trials. The predicting condition completely matched the predicted
condition with respect to target spatial locations (i.e., leftmost/
rightmost/top/bottom) whereas in the neutral condition the target
randomly appeared at other four locations. Also, the neutral condi-
tion contained trials in which there may have been intertrial pri-
ming in which the location of the target was repeated across two
consecutive trials. Therefore, we split the data into three condi-
tions: predicted, predicting, and neutral (for the latter condition, all
intertrial target location priming trials were removed).

Analysis

RTs analyses were limited to correct trials (89.26%) only. For the
correct trials of each block of each participant, RTs were submitted
to a nonrecursive trimming procedure (Vanselst & Jolicoeur, 1994)
that uses cell size to determine a criterion number of SDs from the
mean beyond which an observation is considered as an outlier (.40%
of trials excluded). Then, trials with RTs , 200 ms (.01%) or with
intertrial priming effect of the target location (6.38%) were also

excluded from analysis (see Figure S1 in online supplemental materi-
als for details of RTs as a function of across-trial distance of the tar-
get location). Finally, mean RTs and accuracies were each submitted
into a two-way (block and target regularity) RM-ANOVA. Green-
house-Geisser corrected p-values (pc) were used in case of sphericity
assumption violations. In addition, whenever a comparison using tra-
ditional null hypothesis testing was insignificant, we also quantified
the Bayes factor (BF) using Bayesian hypothesis testing in JASP
(Wagenmakers et al., 2018) to evaluate the strength of the evidence
for the alternative hypothesis (H1) over the null hypothesis (H0).
Data were visualized using Prism GraphPad and Adobe Illustrator.

Learning Effect

Overall RTs and mean RTs across blocks as a function of tar-
get regularity condition are illustrated in, respectively, panels B
and C of Figure 2. A two-way RM-ANOVA with blocks (1–8)
and regularity (predicted, predicting, neutral) on mean RTs only
revealed the significant main effect of block, F(7, 392) = 30.08,
pc , .001, hp

2 = .35. No significant effects were observed for the
main effect of target regularity (predicted: 1529 ms, predicting:
1562 ms, neutral: 1549 ms), F(2, 112) = .69, pc = .50, hp

2 = .01,
BF01 = 6.19 (moderate evidence for the absence of any condition
differences) or the Block 3 Regularity interaction, F(14, 784) =
1.30, pc = .20, hp

2 = .02, BF01 = 3720.89.
A RM-ANOVA on accuracies showed similar results. Only the

main effect of block was significant, F(7, 392) = 17.02, pc , .001,
hp
2 = .23. Neither the main effect of regularity (predicted: 89.12%,

predicting: 87.98%, neutral: 89.47%), F(2, 112) = 2.75, p = .07, hp
2 =

.05, BF01 = 1.80, nor Block 3 Regularity interaction, F(14, 784) =

.60, pc = .82, hp
2 = .01, BF01 = 5293.94, reached the significance.

Across-Trial Target Location Distance Analysis

Because our regularity pairs always contained a transition with
a distance of four locations (e.g., a target at the top position was
always followed by a target at the bottom position), a more even
comparison would include only trials with a four-location distance
as well between the current target position and the target position
on the previous trial. When we restricted the across-trial target dis-
tance to 4 locations and performed a paired-samples t test compar-
ing predicted and neutral trials, the result again indicated no

Figure 2
Results of Experiment 1: No RTs Benefits for Predicted Trials

Note. (A) Illustration of regularity pairs and the three conditions. Overall RTs (B) and RTs across blocks (C)
as a function of target regularity (note that both predicting and neutral condition were unpredicted conditions).
The error bars denote 95% confidence intervals. The lines in C represent the fitted data using the smoothing
spline method in Prism GraphPad software. ns = not significant. See the online article for the color version of
this figure.
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significant difference between predicted (1,529 ms) and neutral
(1,581 ms) trials, t56 = –1.74, p = .09, hp

2 = .05, BF01 = 1.67, show-
ing anecdotal evidence for the absence of the significance.

Awareness of the Regularities

Thirteen of 57 participants reported to have been aware of the
across-trial association of the target location during the experi-
ment, with a mean confidence score (CS) of 3.46 6 .88
(M 6 SD). Yet only two of them correctly chose both of the pre-
dicted locations (CS: 3.25 6 .35), whereas others indicated wrong
locations (CS: 3.00 6 1.00). The remaining 44 participants
reported to be unaware of the across-trial association of the target
location (CS: 3.43 6 1.07). The mean CS regarding locations they
chose was 1.936 .91.

Discussion

Even though this experiment had across-trial regularities regard-
ing the target, it turns out that participants did not learn and use
these regularities to improve search. Indeed, the time to find the
target in predicted trials was not different than the time to find a
target in trials in which the location was selected randomly. This
finding is unlike what was previously reported for feature (pop-
out) search, where robust RT benefits were found for predicted
over unpredicted trials (Li & Theeuwes, 2020). There are in prin-
ciple two possibilities why no benefit was found in the current
task. First, it is possible that participants were not able to learn the
regularities present in the display because of the serial nature of
the current search task. Indeed, as searching for a target “T”
among “L”s is considered to be a true serial search task, it is feasi-
ble that participants scan the display serially location by location,
most likely in a more or less random order. Because search is ran-
dom it may be difficult to form associations between the two loca-
tions across trials that make up the regularity. Second, it is
possible that participants did implicitly learn the regularities but
were unable to apply them because of the nature of the search
task. Because search is serial observers may always use a random
scanning order to find the target and hence even a learned regular-
ity might not result in faster search times.
The aim of Experiment 2 was to test these possibilities. There-

fore, we combined an initial learning phase involving feature
search and a second phase involving serial search. During the first

half of the experiment, we colored the target “T” red whereas the
nontargets remained gray “L”s. This created conditions similar to
the feature search task of Li and Theeuwes (2020), which did
result in learning of the across-trial contingencies. During the sec-
ond part of the experiment, we changed the task to a normal serial
T-among-Ls task as all elements were gray again. We hypothe-
sized that, during the first half of the experiment, participants may
be able to learn the regularities. Note that the same regularities
stayed in place during serial search because it is likely that the
learned biases from across-trial regularities would fade quickly if
the target locations would be randomly assigned (i.e., no regular-
ities). In that case it would be impossible to determine whether the
location-association biases learned during parallel search can per-
sist during serial search or whether the learned associations would
be rapidly unlearned during when the contingencies are no longer
in place. Indeed, previous work involving distractor learning has
shown that only a few trials are needed to unlearn particular con-
tingencies (Wang & Theeuwes, 2020). Therefore, during serial
search, we kept the same regularities as during parallel search and
the critical question was whether the learned target-association
biases during feature search could persist when search became
serial.

Experiment 2

Experiment 2 was identical to Experiment 1 except that during
the first four blocks of the experiment, the target “T” was colored
red, creating a pop-out which allowed parallel feature search to
find the target. During the final 4 blocks of the experiment, both
the target and distractors were colored gray, invoking the need for
serial search through the display.

Method

The method was identical to that of Experiment 1, with the fol-
lowing changes: First, we still focused on the RTs difference
between predicted and unpredicted conditions, the same power
analysis as Experiment 1 showed a minimum of 44 participants
was needed. Thus, a new set of fifty-four participants (25 females
and 29 males,Mage = 23.02 years, SDage = 2.97) were recruited via
Prolific. Three participants were excluded because their overall
accuracies in the serial search were lower than 75%. All

Figure 3
Stimulus Display Sequence With Across-Trial Target Regularities in Experiment 2

Note. The “T” target was red in the first half of Experiment 2 (A) but became gray in the second half (B). See
the online article for the color version of this figure.
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participants reported normal color vision as well as normal or cor-
rected-to-normal visual acuity. Second, as illustrated in Figure 3A,
the target was colored in red during the first 4 blocks of 64 trials
each (a total of 256 trials), making the target salient, popping-out
from the display. During the next 4 blocks of 64 trials each (a total
of 256 trials), all elements including the target “T”, were presented
in gray (see Figure 3B). The statistical regularities remained the
same throughout the two halves of the experiment and were identi-
cal to those of Experiment 1. Third, practice consisted of a 20-trial
practice block of serial search with all stimuli in gray (repeated
until they achieved the performance criteria as in Experiment 1;
they performed on average 65 (SD: 43) practice trials), followed
by a single 20-trial practice block of parallel search for a red target
among gray distractors.

Results

Analysis

RTs were limited to trials with correct responses (92.22%). The
same nonrecursive trimming procedure (Vanselst & Jolicoeur,
1994) as in Experiment 1 was used for outlier removal (1.17%).
There were no trials with RTs faster than 200 ms. As above, trials
with an immediate repetition of the target location were also
excluded from analysis (6.32%).

Learning Effect

As illustrated in Figure 4A, a two-way RM-ANOVA on mean
RTs with “half” (1st and 2nd half) and target regularity (predicted,
predicting, neutral) as factors showed the significant main effect of
half, F(1, 50) = 2327.25, p , .001, hp

2 = .98, suggesting that there
was a large difference in search times between parallel search (522
ms) and serial search (1,577 ms). The main effect of target regularity
was significant as well, F(2, 100) = 7.35, p = .001, hp

2 = .13. More
importantly, the Half 3 Regularity interaction also reached signifi-
cance, F(2, 100) = 5.91, p = .004, hp

2 = .11. To further assess this
interaction, separate one-way RM-ANOVA were conducted for par-
allel search (first half) and serial search (second half). There was no
reliable effect of regularity (predicted: 519 ms, predicting: 522 ms,

neutral: 524 ms) in the first half, F(2, 100) = 2.10, p = .13, hp
2 = .04,

BF01 = 2.67 (but see the analysis on trials whose target location was
4 locations away from the target location on the previous trial below).
It can be noted that the lack of a significant regularity effect here is
likely attributable to a ceiling effect, because the effect was signifi-
cant in the first block (i.e., RTs in the predicted [531 ms] condition
were faster than predicting [541 ms, p = .023, hp

2 = .10] and neutral
[541 ms, p = .009, hp

2 = .13] condition), but as RTs further decreased
in subsequent blocks, a difference between the conditions was no
longer found (see Figure 4B). During the second half a significant
main effect of target regularity was found, F(2, 100) = 6.66, p =
.002, hp

2 = .12. Post hoc tests showed faster RTs in predicted trials
(1,525 ms) relative to predicting (1,588 ms, p = .023, hp

2 = .10) or
neutral (1,620 ms, p = .002, hp

2 = .18) trials. There was no difference
between the latter two (p = .19, hp

2 = .03).
This significant influence of the learned regularities during the sec-

ond half raises the question the regularities learned in the first half
are simply immediately used in serial search, or they are gradually
learned within serial search blocks. To examine the time course of
the effect we divided the RTs data during the second half (serial
search) into separate blocks (see Figure 4C). A two-way RM-
ANOVA with blocks of serial search (1–4) and regularity (predicted,
predicting, neutral) as factors did not reveal a significant Block 3
Regularity interaction, F(6, 300) = .70, p = .65, hp

2 = .01, BF01 =
184.49 (strong evidence for the absence of an interaction).

The RM-ANOVA on accuracies revealed the significant main
effect of half, F(1, 50) = 116.74, p , .001, hp

2 = .70, with higher
accuracy in the first half (95.97%) than the second half (87.85%).
The main effect of regularity did not reach the significance, F(2,
100) = 3.05, p = .052, hp

2 = .06, BF01 = 10.70 (strong evidence for
the absence of any difference). Accuracies in the predicted, pre-
dicting, and neutral condition were respectively 91.36%, 91.76%
and 92.60%. The two-way interaction was insignificant as well, F
(2, 100) = .70, p = .50, hp

2 = .01, BF01 = 10.03.

Across-Trial Target Location Distance Analysis

With a restriction of target-to-target distance of 4 locations, a 2
(half) 3 2 (regularity) RM-ANOVA was conducted. The result

Figure 4
Results of Experiment 2: Across-Trial Target Regularities Facilitate Search

Note. Overall RTs as a function of target regularity, in the first and second half of Experiment 2 (A). Mean RTs under separate
blocks in three conditions in the first half (B) and second half (C). Mean RTs as a function of regularity when the across-trial tar-
get location distance was 4 locations. The error bars denote 95% confidence intervals. The lines in C reflect the fitted data using
smoothing spline method in Prism GraphPad software. ns = not significant. * p , .05. ** p , .01. See the online article for the
color version of this figure.
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revealed the significant main effect of target regularity, F(1, 50) =
12.55, p = .001, hp

2 = .20, with faster RTs in predicted trials (1,022
ms) relative to neutral trials (1,084 ms). The Half 3 Regularity
interaction also reached significance, F(1, 50) = 9.80, p = .003,
hp
2 = .16. As illustrated in Figure 4D, the additional simple-effect

analysis showed that the difference was significant not only in the
first half, F(1, 50) = 4.62, p = .037, hp

2 = .09, but also highly signif-
icant in the second half, F(1, 50) = 11.20, p = .002, hp

2 = .18. These
results support the interpretation that participants learned the
across-trial regularities regarding target locations during the paral-
lel search and this bias persisted during the serial search.

Awareness of the Regularities

Twelve of 51 participants indicated that they were aware of the
across-trial association of the target location during the experiment
(CS: 4.08 6 .90). Of those, only one participant correctly chose
both predicted locations (CS: 4.5), whereas the other 11 partici-
pants indicated incorrect locations (CS: 2.73 6 1.08). The remain-
ing 39 participants indicated that they were unaware of the trial-to-
trial target location association (CS: 2.11 6 .93). Note that when
we removed the one “aware” participant, the observed pattern of
results remained qualitatively identical.

Discussion

Experiment 2 was designed to disentangle the learning and use
of statistical regularities. To that end we first had observers engage
in parallel search with the embedded across-trial regularities,
which was then followed by serial search with those same regular-
ities. We showed that during the part of the experiment that
involved parallel search, during the first block, participants learned
and used the regularities as they were faster for predicted trials
than for unpredicted (both predicting and neutral) trials. When
controlling for the across-trial distance of the target locations (i.e.,
four locations), there was a reliable difference between predicted
and neutral trials (see across-trial target location distance analysis
and Figure 4D). Critically, after being exposed to feature search
during the first half of the experiment, the learned across-trial tar-
get-target associations generalized to serial search. It is important
to note that the display during the second half of this experiment
was exactly the same as the display in Experiment 1; the only dif-
ference was that in the current experiment participants had the op-
portunity to first learn the regularities during feature search. The
finding that the facilitation of search for predictable target loca-
tions generalized to the subsequent phase of serial search leads to
the conclusion that the learned across-trial biases in the pop-out
feature search could persist during serial search.

General Discussion

The present study shows that when searching serially through a
display, participants were not able to learn relatively rare across-trial
target-target statistical regularities (two pairs, four of eight locations).
Indeed, when the location of the target on a given trial predicted the
location of the target on the next trial, participants were not faster
compared with when the target locations were randomly assigned
across trials. However, by creating conditions which facilitated learn-
ing of the statistical regularities across trials (employing pop-out fea-
ture search), the target-to-target associations were learned and they

persisted during serial search, facilitating target detection when pre-
sented at predicted locations.

Even though it is well known that intertrial repetition priming is
a prime example of how selection history affects visual search
(e.g., Anderson et al., 2021; Failing & Theeuwes, 2018), it is im-
portant to note that the current target-to-target RT benefits are not
related to what is known as intertrial priming. Several forms of
intertrial priming are recognized; for example, there are intertrial
RT benefits when a target appears at the same location on consecu-
tive trials (Maljkovic & Nakayama, 1996), or there are benefits
when the target has the same defining features across trials (Malj-
kovic & Nakayama, 1994). In our study, a particular target loca-
tion predicted the target location on the following trial, but this
was never the same location. Instead, it was always the location on
the opposite side of the display. In addition, across trials the fea-
tures of the target (its orientation, and therefore the response) were
randomly assigned which prevented any intertrial feature priming.
Clearly, the current findings cannot be explained in terms of some
form of intertrial priming. Note that previous work investigating
the distributional regularities of the target/distractor location by
presenting the target or distractor much more often in one location
than in all other locations do suffer from this potential shortcom-
ing of repetition intertrial priming as the target or distractor has to
be presented at the same location repeatedly (see also Goschy et
al., 2014; Huang et al., 2021; Kabata & Matsumoto, 2012). The
current findings can only be explained by assuming that observers
have learned the embedded across-trial regularities without the
need to assume any low-level repetition priming effects.

We used a T-among-Ls search task, a common operationaliza-
tion for what has been labeled “spatial-configuration search”
which is considered the gold standard for true serial search (Wolfe,
1998). Indeed, it has been claimed that using this type of search,
participants attend one item at a time until the target is found
(Wolfe, 2003). If we assume that in our experiments search is truly
done in a one-by-one manner, this would imply that participants
would find the target on average after attending 4 items (as our dis-
play size is 8). On those trials in which the location of the target
on the current trial predicts the location of target on the upcoming
(predicted) trial (T1-.T2 regularities), after attending T1 on the
current trial they will not directly attend T2 on the next trial but
rather attend on average 4 items before encountering T2. Forming
T1-.T2 associations might hence be prevented as other nontarget
items are attended between attending T1 and T2.

The findings previously reported by Ono et al. (2005), who
examined the boundary of across-trial temporal CC, are in line
with such an interpretation. Ono et al. (2005) had participants
search for a rotated “T” among eleven rotated “L”s presented at
locations randomly chosen within a 8 3 6 grid matrix. Unbe-
knownst to the participants, various across-trial regularities of the
spatial layout were built in separate experiments. When a specific
target location on trial N � 1 predicted another specific target loca-
tion on the following trial N (Experiment 2), no learning effect
was observed. Similarly, when distractor locations on the previous
trial predicted the specific target location on the current trial
(Experiment 3), there was no learning as well. VSL only occurred
under circumstances where a repeated target-distractor configura-
tion was predictive of the specific target location on the following
trial (Experiment 1). Ono et al. (2005) attributed the lack of learn-
ing in Experiments 2 and 3 to the disruptive effects produced by
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the random variation. A consistent target–target association, for
example, was insufficient for VSL to occur because the random var-
iation caused by the attended nontargets in the layout hindered
observers from learning. Therefore, they concluded that the visual
system is capable of detecting consistent associations (ubiquitous
statistical learning), but the detection efficiency depends on the co-
occurring noise (noise-sensitive statistical learning). In our Experi-
ment 1, searching for a “T” among “L”s obviously also generated a
lot of noise, preventing the detection of consistent associations.
Notably, the noise in our Experiment 1 was different from that

induced by the additional singleton paradigm (Theeuwes, 1991,
1992) in Experiments 3 and 4 of Li and Theeuwes (2020). In their
experiments, attention was allocated to the target location immedi-
ately or, when attention was captured by a colored singleton dis-
tractor, as soon as attention was disengaged from the distractor
location. In other words, at maximum one distractor location was
attended between two successive target locations, which still made
nonadjacent target-target association possible to occur. This is in
line with observations in the domain of procedural habit-like learn-
ing, where the learning of a motor sequence is found to be less ef-
ficient when random elements are inserted within the predictable
sequence (e.g., Howard & Howard, 1997; Nemeth et al., 2013). It
is also in line with previous work on the learning of regular pat-
terns that occur in nonadjacent elements. It was demonstrated that
dependencies between the first and the third elements (AxB, where
x is a random element) could be detected by infants (e.g., Gómez,
2002) and nonhuman primates (e.g., Newport et al., 2004),
whereas the ones with several more intervening random elements
(AxxxB) could not be learned (e.g., Gómez, 2002; Grama et al.,
2013). In addition, higher perceptual similarity between the pre-
dicting and predicted stimuli (that in turn were perceptually differ-
ent from the intervening elements) was shown to help the learning
of nonadjacent regularities (e.g., Gómez, 2002; Newport & Aslin,
2004; Wilson et al., 2020). This might explain why the colored
singleton distractor in the experiments by Li and Theeuwes
(2020), which was perceptually different from the consistent gray
targets, did not disrupt the learning of across-trial target-target
associations. By contrast, in the T-among-Ls serial search task, the
other elements of the search display (which can be considered
intervening elements due to the serial scanning) were perceptually
very similar to the targets that made up the target-target pair regu-
larities, hence this might have kept observers from detecting these
regularities.
Typically, in feature search, the target stands out from the non-

target items, which means that the nontarget items are basically
not attended. This implies that as soon as the display is presented,
spatial attention moves to the location of the feature (the colored
T) that stands out. This makes it possible to learn the across-trial
target-target location associations. As speculated by Li and
Theeuwes (2020), once the associations between the locations are
formed the weights within the spatial priority map of selection are
adjusted such that following the selection of a target positioned at
a predicting location, the weights of the location on the upcoming
trial that is predicted by the previous trial are up-regulated. This in
turn will result in faster response times when targets are presented
at the predicted location. We speculate here that this mechanism
of across-trial up-regulating the weights of predicted location
remains operative even when the task switches from feature search
to serial search.

The results of Experiment 2 suggest that there is transfer of the
priority map that incorporated the predictive relation between the
target locations, to a different version of the task that involved a
very different type of search. Note the term “transfer” here might
not be completely correct because the statistical regularities
regarding target locations across trials remained the same through-
out the whole experiment. However, the exposure to the across-
trial regularities during serial search was not sufficient for VSL to
occur. A more credible possibility, also supported by our time-
resolved analysis, is that observers first learned the regularities
during parallel search which in turn modified the spatial priority
map. This map remained in place when search became serial. Our
results are, in this sense, in agreement with previous findings that
participants learn nonadjacent statistical regularities (AxB, where
x is a random element) better if they are first exposed to the adja-
cent version of the regularity (AB; e.g., Lai & Poletiek, 2011;
Lany & Gómez, 2008).

Similarly consistent with our findings, some previous results
indeed found that regularities that were implicitly learned
remained in place even when the task changed or when the regu-
larities were no longer present (e.g., Duncan & Theeuwes, 2020;
Jiang et al., 2013, 2015; Jiang & Won, 2015; Sauter et al., 2019).
For example, Jiang et al. (2015) showed that regularities regarding
the location of the target learned during a training session general-
ized to a similar search tasks with different stimuli (i.e., from the
T-among-Ls task to the 2-among-5s task) and with different diffi-
culty (i.e., different offsets between two segments of nontarget
“L” in different phases). Duncan and Theeuwes (2020) showed
that when participants performed two different tasks involving the
same display, regularities that were present during one task stayed
in place while performing another task. The learned spatial biases
could persist more than one day even if when the spatial distribu-
tion was even (Jiang et al., 2013; Sauter et al., 2019). There is also
evidence that implicitly learned suppression of high-probability
distractor locations generalizes across different contexts (Britton
& Anderson, 2020; de Waard et al., 2021). Compared with these
previous studies, our Experiment 2 went a step further by changing
the nature of the search task entirely (even though the search dis-
plays were almost identical). Our results suggest that the spatial
priority map “shaped” during parallel search can transfer to serial
search.

We also measured awareness by asking participants, upon com-
pletion of the experiment, whether they were aware of any
sequence regarding target locations such as that one target location
was always followed by another target location. We also had them
answer eight-alternative forced-choice questions to test their
explicit knowledge of the regularities. As in most previous studies
investigating VSL (e.g., Chun & Jiang, 1998; Ferrante et al., 2018;
Geng & Behrmann, 2005; Jiang & Swallow, 2013; Turk-Browne
et al., 2009; Wang & Theeuwes, 2018), only a few participants
reported to be aware of a sequential relationship between target
locations across trials. Most participants were not able to identify
what would be the predicted target location on the subsequent trial
when the predicting target location was given. As with most VSL
experiments, our effects seem to be driven by implicit rather than
explicit knowledge of across-trial regularities. An additional indi-
cation that the learning we observed was implicit, and the facilita-
tion of search was not the result of top-down expectation comes
from the search times that were observed. It is likely that if
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participants would have explicit and aware knowledge of where
the target location would be on the upcoming trial, the RTs on pre-
dicted trials should be much lower as there would be no need to
search serially through the display. One would expect that the
search times for predicted trials should be close to what we have
found for feature search. This is clearly not the case. Rather, there
seems to be a subtle bias which drives the focus of serial search
slightly faster to the predicted location than to the random
locations.
In sum, we conclude that during serial search participants are

not able to learn across-trial statistical regularities regarding the
target locations. However, by introducing feature search we cre-
ated conditions that facilitated the learning of these across-trial sta-
tistical regularities, which remained in place when the search
switched to serial. We propose that the target–target associations
learned during feature search led to the formation of a flexible pri-
ority map: once the predicting location was selected, the weights
of the predicted location were up-weighted thereby biasing atten-
tional priority for the upcoming trial. This flexible priority map
remained active even when the search task changed from parallel
to serial search.
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